Skip to main content
Log in

Optimization of Ammonia Removal from Aqueous Solution by Microwave-Assisted Air Stripping

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, the optimum conditions for the ammonia removal from aqueous solution by microwave-assisted air stripping have been investigated at pH 11. Ammonia solution with five different initial ammonia concentrations was prepared synthetically. The Taguchi method was applied to optimize the ammonia removal conditions. Initial ammonia concentration, air flow rate, temperature, stirring speed, microwave radiation power, and radiation time were defined as the optimization parameters. Experiments were carried out at five different levels for each operational parameter. The results of the experiments revealed that 1800 ppm of initial ammonia concentration, 7.5 L min−1 of air flow rate, 60 °C of temperature, 500 rpm of stirring speed, and 500 W of microwave radiation power for 180 min. of microwave radiation time are optimum conditions for complete ammonia removal. In addition to present experimental data, the optimum operational conditions predicted by the balanced characteristics of orthogonal array were confirmed experimentally. Finally, the effect of optimization parameters was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramovitch, R. A., Bangzhou, H., Abramovitch, D. A., & Jiangao, S. (1999). In situ decomposition of PAHs in soil and desorption of organic solvents using microwave energy. Chemosphere, 39(1), 81–87. https://doi.org/10.1016/S0045-6535(98)00590-6.

    Article  CAS  Google Scholar 

  • Ata, O. N., Aygun, K., Okur, H., & Kanca, A. (2016). Determination of ammonia removal from aqueous solution and volumetric mass transfer coefficient by microwave-assisted air stripping. International Journal of Environmental Science and Technology, 13(10), 2459–2466. https://doi.org/10.1007/s13762-016-1082-4.

    Article  CAS  Google Scholar 

  • Basakcilardan-Kabakci, S., Ipekoglu, A. N., & Talini, I. (2007). Recovery of ammonia from human urine by stripping and absorption. Environmental Engineering Science, 24(5), 615–624. https://doi.org/10.1089/ees.2006.0412.

    Article  CAS  Google Scholar 

  • Bermúdez, J. M., Beneroso, D., Rey-Raap, N., Arenillas, A., & Menéndez, J. A. (2015). Energy consumption estimation in the scaling-up of microwave heating processes. Chemical Engineering and Processing: Process Intensification, 95(Supplement C), 1–8. https://doi.org/10.1016/j.cep.2015.05.001.

  • Bonmati, A., & Flotats, X. (2003). Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Management, 23(3), 261–272. https://doi.org/10.1016/S0956-053X(02)00144-7.

    Article  CAS  Google Scholar 

  • Chemat, F., Esveld, D. C., Poux, M., & Di-Martino, J. L. (1998). The role of selective heating in the microwave activation of heterogeneous catalysis reactions using a continuous microwave reactor. Journal of Microwave Power and Electromagnetic Energy, 33(2), 88–94.

    Article  Google Scholar 

  • Cheung, K. C., Chu, L. M., & Wong, M. H. (1997). Ammonia stripping as a pretreatment for landfill leachate. Water Air and Soil Pollution, 94(1–2), 209–221.

    CAS  Google Scholar 

  • de la Hoz, A., Diaz-Ortiz, A., & Moreno, A. (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 34(2), 164–178. https://doi.org/10.1039/b411438h.

    Article  Google Scholar 

  • Değermenci, N., Ata, O. N., & Yildız, E. (2012). Ammonia removal by air stripping in a semi-batch jet loop reactor. Journal of Industrial and Engineering Chemistry, 18(1), 399–404. https://doi.org/10.1016/j.jiec.2011.11.098.

    Article  Google Scholar 

  • Ferraz, F. M., Povinelli, J., & Vieira, E. M. (2013). Ammonia removal from landfill leachate by air stripping and absorption. [Article]. Environmental Technology, 34(15), 2317–2326. https://doi.org/10.1080/09593330.2013.767283.

    Article  CAS  Google Scholar 

  • Gan, Q. (2000). A case study of microwave processing of metal hydroxide sediment sludge from printed circuit board manufacturing wash water. Waste Management, 20(8), 695–701. https://doi.org/10.1016/S0956-053X(00)00036-2.

    Article  CAS  Google Scholar 

  • Gopalsamy, B. M., Mondal, B., & Ghosh, S. (2009). Taguchi method and ANOVA: an approach for process parameters optimization of hard machining while machining hardened steel. Journal of Scientific & Industrial Research, 68(8), 686–695.

    CAS  Google Scholar 

  • Hasanoğlu, A., Romero, J., Pérez, B., & Plaza, A. (2010). Ammonia removal from wastewater streams through membrane contactors: experimental and theoretical analysis of operation parameters and configuration. Chemical Engineering Journal, 160(2), 530–537. https://doi.org/10.1016/j.cej.2010.03.064.

    Article  Google Scholar 

  • Hossini, H., Rezaee, A., Ayati, B., & Mahvi, A. H. (2016). Optimizing ammonia volatilization by air stripping from aquatic solutions using response surface methodology ( RSM). [Article; Proceedings Paper]. Desalination and Water Treatment, 57(25), 11765–11772. https://doi.org/10.1080/19443994.2015.1046946.

    Article  CAS  Google Scholar 

  • Jain, D. K., Patwari, A. N., Rao, M. B., & Khan, A. A. (1990). Liquid circulation characteristics in jet loop reactors. Canadian Journal of Chemical Engineering, 68(6), 1047–1051.

    Article  CAS  Google Scholar 

  • Jenkins, D. H., McCallum, D. A., Ruzbacky, R., Saunders, S., & Brent, A. K. (2007). Air stripping of ammonia and methanol in a bubble-cap column. Environmental Progress, 26(4), 365–374. https://doi.org/10.1002/ep.10235.

    Article  CAS  Google Scholar 

  • Kackar, R. N. (1989). Off-line quality control, parameter design, and the Taguchi method. In K. Dehnad (Ed.), Quality control, robust design, and the Taguchi method (pp. 51–76). Boston: Springer US.

    Chapter  Google Scholar 

  • Lei, X., Sugiura, N., Feng, C., & Maekawa, T. (2007). Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. Journal of Hazardous Materials, 145(3), 391–397. https://doi.org/10.1016/j.jhazmat.2006.11.027.

    Article  CAS  Google Scholar 

  • Lin, L., Chen, J., Xu, Z., Yuan, S., Cao, M., Liu, H., et al. (2009a). Removal of ammonia nitrogen in wastewater by microwave radiation: a pilot-scale study. Journal of Hazardous Materials, 168(2–3), 862–867. https://doi.org/10.1016/j.jhazmat.2009.02.113.

    Article  CAS  Google Scholar 

  • Lin, L., Yuan, S., Chen, J., Xu, Z., & Lu, X. (2009b). Removal of ammonia nitrogen in wastewater by microwave radiation. Journal of Hazardous Materials, 161(2–3), 1063–1068. https://doi.org/10.1016/j.jhazmat.2008.04.053.

    Article  CAS  Google Scholar 

  • Liu, B. X., Giannis, A., Zhang, J. F., Chang, V. W. C., & Wang, J. Y. (2015). Air stripping process for ammonia recovery from source-separated urine: modeling and optimization. Journal of Chemical Technology and Biotechnology, 90(12), 2208–2217. https://doi.org/10.1002/jctb.4535.

    Article  CAS  Google Scholar 

  • Phadke, M. S. (1989). Quality engineering using robust design. Upper Saddle River: Prentice Hall.

  • Pignatiello, J. J. (1988). An overview of the strategy and tactics of Taguchi. IIE Transactions, 20(3), 247–254. https://doi.org/10.1080/07408178808966177.

    Article  Google Scholar 

  • Prasad, K. Y., & Ramanujam, T. K. (1995). Gas holdup and overall volumetric mass-transfer coefficient in a modified reversed flow jet loop reactor. Canadian Journal of Chemical Engineering, 73(2), 190–195.

    Article  CAS  Google Scholar 

  • Quan, X., Liu, X., Bo, L., Chen, S., Zhao, Y., & Cui, X. (2004). Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation. Water Research, 38(20), 4484–4490. https://doi.org/10.1016/j.watres.2004.08.031.

    Article  CAS  Google Scholar 

  • Quan, X., Wang, F., Zhao, Q., Zhao, T., & Xiang, J. (2009). Air stripping of ammonia in a water-sparged aerocyclone reactor. Journal of Hazardous Materials, 170(2–3), 983–988. https://doi.org/10.1016/j.jhazmat.2009.05.083.

    Article  CAS  Google Scholar 

  • Ross, P. J. (1988). Taguchi techniques for quality engineering. New York: McGraw-Hill.

  • Roy, R. K. (2010). A primer on the Taguchi method. Dearborn: Society of Manufacturing Engineers.

  • Tchobanoglous, G., & Burton, F. L. (1991). Wastewater engineering. Management, 7, 1–4.

    Google Scholar 

  • Yuan, S., Tian, M., & Lu, X. (2006). Microwave remediation of soil contaminated with hexachlorobenzene. Journal of Hazardous Materials, 137(2), 878–885. https://doi.org/10.1016/j.jhazmat.2006.03.005.

    Article  CAS  Google Scholar 

  • Yuan, M.-H., Chen, Y.-H., Tsai, J.-Y., & Chang, C.-Y. (2016). Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed. Process Safety and Environmental Protection, 102, 777–785. https://doi.org/10.1016/j.psep.2016.06.021.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Scientific Research Projects Foundation for financial support (BAP-2012-104) and for the Chemical Engineering Department Laboratory of Ataturk University management and staff for their support and service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzu Kanca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ata, O.N., Kanca, A., Demir, Z. et al. Optimization of Ammonia Removal from Aqueous Solution by Microwave-Assisted Air Stripping. Water Air Soil Pollut 228, 448 (2017). https://doi.org/10.1007/s11270-017-3629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3629-5

Keywords

Navigation