Skip to main content
Log in

Comparison of Arsenic Adsorption on Goethite and Amorphous Ferric Oxyhydroxide in Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Except for the specific surface area and pore size, the hydroxyl groups on the surface of the ferric oxides were determined as the key factor in arsenic adsorption in this study. Two synthetic mesoporous ferric oxides, amorphous ferric oxyhydroxide (AFO) and goethite, were used to adsorb As(III) and As(V) in aqueous solution. The experimental results showed that the AFO had a higher hydroxyl group density, resulting in a higher arsenic adsorption capacity than that on the goethite for both As(III) and As(V). Also, it was found that the adsorption of As(III) on both the goethite and AFO was faster than that of As(V), and the adsorption rate fitted the pseudo-second-order kinetics. The findings indicated a promising modification of adsorbents for arsenic remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ASTM (1982). Annual Book of ASTM Standards, arsenic by the molybdenum blue method (Chemical a.). Philadelphia.

  • Bakoyannakis, D. N., Deliyanni, E. A., Zouboulis, A. I., Matis, K. A., Nalbandian, L., & Kehagias, T. (2003). Akaganeite and goethite-type nanocrystals: synthesis and characterization. Microporous and Mesoporous Materials, 59(1), 35–42.

    Article  CAS  Google Scholar 

  • Bang, S., Johnson, M. D., Korfiatis, G. P., & Meng, X. (2005). Chemical reactions between arsenic and zero-valent iron in water. Water Research, 39(5), 763–770.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2010). Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of West Bengal, India. Water, Air, and Soil Pollution, 213(1–4), 3–13.

    Article  CAS  Google Scholar 

  • Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons.pdf. Carbon, 32(5), 758–769.

    Article  Google Scholar 

  • Cornell, R., & Schwetman, U. (2000). Iron oxide in the laboratory (2nd ed.). Weinhiem: Wiley-VCH.

    Google Scholar 

  • Cui, H., Li, Q., Gao, S., & Shang, J. K. (2012). Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. Journal of Industrial and Engineering Chemistry, 18(4), 1418–1427.

    Article  CAS  Google Scholar 

  • Dai, M., Xia, L., Song, S., Peng, C., & Lopez-Valdivieso, A. (2016). Adsorption of As(V) inside the pores of porous hematite in water. Journal of Hazardous Materials, 307, 312–317.

    Article  CAS  Google Scholar 

  • Das, S., Hendry, M. J., & Essilfie-Dughan, J. (2011). The transformation of 2-line ferrihydrite to goethite and hematite as a function of pH and temperature. Transformation, 45(Iii), 1–11.

    Google Scholar 

  • Goldberg, S., & Johnston, C. T. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234, 204–216.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Nayak, A., Agarwal, S., Dobhal, R., Uniyal, D. P., Singh, P., et al. (2012). Arsenic speciation analysis and remediation techniques in drinking water. Desalination and Water Treatment, 40(1–3), 231–243.

    Article  CAS  Google Scholar 

  • Hristovski, K. D., Westerhoff, P. K., Crittenden, J. C., & Olson, L. W. (2008). Arsenate removal by nanostructured ZrO 2 spheres. Environmental Science & Technology, 42(10), 3786–3790.

    Article  CAS  Google Scholar 

  • Jiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., et al. (2015). Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Applied Surface Science, 353, 1087–1094.

    Article  CAS  Google Scholar 

  • Jönsson, J., & Sherman, D. M. (2008). Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: Implications for arsenic release in anoxic groundwaters. Chemical Geology, 255(1–2), 173–181.

    Article  Google Scholar 

  • Kang, D., Yu, X., Tong, S., Ge, M., Zuo, J., Cao, C., & Song, W. (2013). Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution. Chemical Engineering Journal, 228, 731–740.

    Article  CAS  Google Scholar 

  • Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B., & Bollinger, J.-C. (2002). Arsenic adsorption onto pillared clays and iron oxides. Journal of Colloid and Interface Science, 255(1), 52–58.

    Article  CAS  Google Scholar 

  • Lenoble, V., Deluchat, V., Serpaud, B., & Bollinger, J. C. (2003). Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta, 61(3), 267–276.

    Article  CAS  Google Scholar 

  • Mähler, J., & Persson, I. (2013). Rapid adsorption of arsenic from aqueous solution by ferrihydrite-coated sand and granular ferric hydroxide. Applied Geochemistry, 37, 179–189.

    Article  Google Scholar 

  • Manceau, A. (1995). The mechanism of anion adsorption on iron oxides: evidence for the bonding of arsenate tetrahedra on free Fe(O, OH)6 edges. Geochimica et Cosmochimica Acta, 59(17), 3647–3653.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142(1–2), 1–53.

    Article  CAS  Google Scholar 

  • Moore, K. L., Hawes, C. R., McGrath, S. P., Zhao, F.-J., & Grovenor, C. R. M. (2013). High resolution SIMS analysis of arsenic in rice. Surface and Interface Analysis, 45(1), 309–311.

    Article  CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16(7), 1247–1253.

    Article  CAS  Google Scholar 

  • Ramirez-Muiz, K., Jia, F., & Song, S. (2012). Adsorption of AsV in aqueous solutions on porous hematite prepared by thermal modification of a siderite-goethite concentrate. Environmental Chemistry, 9(6), 512–520.

    Article  Google Scholar 

  • Salame, I. I., & Bandosz, T. J. (2001). Surface chemistry of activated carbons: combining the results of temperature-programmed desorption, Boehm, and potentiometric titrations. Journal of Colloid and Interface Science, 240, 252–258.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112, 247–270.

    Article  CAS  Google Scholar 

  • Tamura, H., Tanaka, A., Mita, K., & Furuichi, R. (1999). Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity. Journal of Colloid and Interface Science, 209, 225–231.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using iron oxide-coated sand. CEUR Workshop Proceedings, 142(1–4), 95–111.

    CAS  Google Scholar 

  • Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., & Muilenberg, G. E. (1979). Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Division, Perkin-Elmer Corp. Perkin-Elmer Corporation. Eden Prairie, Minnesota.

Download references

Funding

This work received financial supports from the National Natural Science Foundation of China under the project nos. 51474167 and 51674183.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Dai or Shaoxian Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Dai, M., Xia, L. et al. Comparison of Arsenic Adsorption on Goethite and Amorphous Ferric Oxyhydroxide in Water. Water Air Soil Pollut 228, 427 (2017). https://doi.org/10.1007/s11270-017-3602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3602-3

Keywords

Navigation