Skip to main content
Log in

Improved Photodegradation Efficiency of 2,4-DCP Through a Combined Q3Fe(III)-Decorated Porous g-C3N4/H2O2 System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) is a photocatalyst with wide application in removal of organic pollutants. In this study, we designed a porous g-C3N4 (p-g-C3N4)/8-quinolinolato iron(III) (Q3Fe)/H2O2 system to enhance the organic pollutant removal efficiency by combining photocatalysis and Fenton interaction under neutral condition. The p-g-C3N4 was prepared through a two-step thermal oxidation reaction. Afterwards, Q3Fe-coupled p-g-C3N4 was prepared by an impregnating method. The 2,4-dichlorophenol (2,4-DCP) photodegradation ratio and decomposition rate of the p-g-C3N4/Q3Fe/H2O2 system are approximately 5 and 18 times as high as those of individual p-g-C3N4 system, respectively. Besides, its degradation rate is 4.3 times as high as that in the p-g-C3N4/H2O2 system. Meanwhile, Q3Fe/g-C3N4 also exhibits higher activity than individual p-g-C3N4 in 2,4-DCP photo-decomposing. On the basis of the results of the radical trapping experiments and the Fe(II) concentration in different systems, the synergistic effect between photocatalysis and Fenton reaction is vital for the efficient pollutant degradation. The coupled system combining p-g-C3N4 with Q3Fe and H2O2 shows potential for efficient treatment of recalcitrant organic pollutants. The combined system in this work indicated a new idea for the decomposition of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aghdam, S. M., Haghighi, M., Allahyari, S., & Yosefi, L. (2017). Precipitation dispersion of various ratios of BiOI/BiOCl nanocomposite over g-C3N4 for promoted visible light nanophotocatalyst used in removal of acid orange 7 from water. Journal of Photochemistry and Photobiology A: Chemistry, 338, 201.

    Article  CAS  Google Scholar 

  • Bai, S., Wang, X. J., Hu, C. Y., Xie, M. L., Jiang, J., & Xiong, Y. J. (2014). Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chemical Communications, 50, 6094.

    Article  CAS  Google Scholar 

  • Cheng, Y. H., Lin, Y. J., Xu, J. P., He, J., Wang, T. Z., Yu, G. J., Shao, D. W., Wang, W. H., Lu, F., Li, L., Du, X. W., Wang, W. C., Liu, H., & Zheng, R. K. (2016). Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu2O microspheres for degrading organic pollutants. Applied Surface Science, 366, 120.

    Article  CAS  Google Scholar 

  • Cui, Y. J., Ding, Z. X., Liu, P., Antonietti, M., Fu, X. Z., & Wang, X. C. (2012). Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Physical Chemistry Chemical Physics, 14, 1455.

    Article  CAS  Google Scholar 

  • Dong, F., Zhao, Z. W., Xiong, T., Ni, Z. L., Zhang, W. D., Sun, Y. J., & Ho, W. K. (2013). In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Applied Materials & Interfaces, 5, 11392.

    Article  CAS  Google Scholar 

  • Dong, F., Li, Q. Y., Sun, Y. J., & Ho, W. K. (2014). Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catalysis, 4, 4341.

    Article  CAS  Google Scholar 

  • Dong, F., Zhao, Z. W., Sun, Y. J., Zhang, Y. X., Yan, S., & Wu, Z. B. (2015). An advanced semimetal–organic Bi spheres–g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environmental Science & Technology, 49, 12432.

    Article  CAS  Google Scholar 

  • Feng, W. H., Fang, J. Z., Zhou, G. Y., Zhang, L. X., Lu, S. Y., Wu, S. X., Chen, Y., Ling, Y., & Fang, Z. Q. (2017). Rationally designed Bi@BiOCl/g-C3N4 heterostructure with exceptional solar-driven photocatalytic activity. Molecular Catalysis, 434, 69.

    Article  CAS  Google Scholar 

  • Hu, J. Y., Tian, K., & Jiang, H. (2016). Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(III)/persulfate system. Chemosphere, 148, 34.

    Article  CAS  Google Scholar 

  • Liu, J., Liu, Y., Liu, N. Y., Han, Y. Z., Zhang, X., Huang, H., Lifshitz, Y., Lee, S. T., Zhong, J., & Kang, Z. H. (2015). Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 347, 970.

    Article  CAS  Google Scholar 

  • Niu, P., Zhang, L. L., Liu, G., & Chen, H. M. (2012). Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 22, 4763.

    Article  CAS  Google Scholar 

  • Ong, W. J., Tan, L. L., Ng, Y. H., Yong, S. T., & Chai, S. P. (2016). Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chemical Reviews, 116, 7159.

    Article  CAS  Google Scholar 

  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603.

    Article  CAS  Google Scholar 

  • Wang, X. C., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2009a). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8, 76.

    Article  CAS  Google Scholar 

  • Wang, X. C., Chen, X. F., Thomas, A., Fu, X. Z., & Antonietti, M. (2009b). Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Advanced Materials, 21, 1609.

    Article  CAS  Google Scholar 

  • Wang, Y. J., Fu, Z. H., Wen, X., Rong, C. Y., Wu, W. F., Zhang, C., Deng, J., Dai, B. H., Kirk, S. R., & Yin, D. L. (2014). 8-Quinolinolato iron(III)-catalyzed oxygenation of cyclohexane with hydrogen peroxide under heating or visible light irradiation. Journal of Molecular Catalysis A: Chemical, 383-384, 46.

    Article  CAS  Google Scholar 

  • Wang, D. H., Pan, J. N., Li, H. H., Liu, J. J., Wang, Y. B., Kang, L. T., & Yao, J. N. (2016a). A pure organic heterostructure of μ-oxo dimeric iron(III) porphyrin and graphitic-C3N4 for solar H2 production from water. Journal of Materials Chemistry A, 4, 290–296.

    Article  CAS  Google Scholar 

  • Wang, X., Feng, J., Bai, Y., Zhang, Q., & Yin, Y. D. (2016b). Synthesis, properties, and applications of hollow micro-/nanostructures. Chemical Reviews, 116, 10983.

    Article  CAS  Google Scholar 

  • Xiao, X., Hu, R. P., Liu, C., Xing, C. L., Qian, C., Zuo, X. X., Nan, J. M., & Wang, L. S. (2013). Facile large-scale synthesis of β-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Applied Catalysis B: Environmental, 140-141, 433.

    Article  CAS  Google Scholar 

  • Xu, G. Y., & Wang, J. B. (2014). Biodegradation of decabromodiphenyl ether (BDE-209) by white-rot fungus Phlebia lindtneri. Chemosphere, 110, 70.

    Article  CAS  Google Scholar 

  • Yang, J., Zhang, H. T., Chen, B. B., Tang, H., Li, C. S., & Zhang, Z. Z. (2015). Fabrication of the g-C3N4/Cu nanocomposite and its potential for lubrication applications. RSC Advances, 5, 64254.

    Article  CAS  Google Scholar 

  • Yu, L. J., Zhang, X. H., Zhuang, C. S., Lin, L., Li, R. J., & Peng, T. Y. (2014). Syntheses of asymmetric zinc phthalocyanines as sensitizer of Pt-loaded graphitic carbon nitride for efficient visible/near-IR-light-driven H2 production. Physical Chemistry Chemical Physics, 16, 4106.

    Article  CAS  Google Scholar 

  • Yuan, Y. P., Cao, S. W., Liao, Y. S., Yin, L. S., & Xue, C. (2013). Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Applied Catalysis B: Environmental, 140-141, 164.

    Article  CAS  Google Scholar 

  • Zhang, X. H., Peng, T. Y., Yu, L. J., Li, R. J., Li, Q. Q., & Li, Z. (2015). Visible/near-infrared-light-induced H2 production over g-C3N4 co-sensitized by organic dye and zinc phthalocyanine derivative. ACS Catalysis, 5, 504.

    Article  Google Scholar 

  • Zhao, Z. W., Sun, Y. J., & Dong, F. (2015). Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 7, 15.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Analytical and Testing Center of SCNU for SEM and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhang Fang.

Electronic Supplementary Material

ESM 1

(DOCX 1903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Zhang, L., Fang, J. et al. Improved Photodegradation Efficiency of 2,4-DCP Through a Combined Q3Fe(III)-Decorated Porous g-C3N4/H2O2 System. Water Air Soil Pollut 228, 373 (2017). https://doi.org/10.1007/s11270-017-3564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3564-5

Keywords

Navigation