Skip to main content
Log in

Conventional as well as Emerging Arsenic Removal Technologies—a Critical Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Arsenic poisoning from contaminated drinking water has evolved as one of the major health hazards in recent times. High concentrations of arsenic in water and soil have been found in many parts of the world. Developing countries like Taiwan, Chile, Argentina, Bangladesh, Nepal and Vietnam are most affected by the contamination of groundwater with arsenic. These countries also cannot afford expensive and large-scale treatments to remove arsenic from drinking waters to acceptable limits (10 ppb, as recommended by WHO and US EPA). The aim of this review is to summarize low-cost, effective conventional technologies currently described in the literature for arsenic removal that can be used in the third world and developing countries, compare them with the emerging technologies and discuss their advantages and disadvantages along with a brief analysis of arsenic chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharyya, S. K., Chakraborty, P., Lahiri, S., Raymahashay, B. C., Guha, S., & Bhowmik, A. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545. https://doi.org/10.1038/44052.

    Article  CAS  Google Scholar 

  • Ahmed, F.M. (2001). An overview of arsenic removal technologies in Bangladesh and India. In: M. Feroze Ahmed. et al. (Eds). Technologies for arsenic removal from drinking water. A compilation of papers presented at the International Workshop on Technologies for Arsenic Removal from Drinking Water. Bangladesh University of Engineering and Technology, Dhaka, Bangladesh and the United Nations University, Tokyo.

  • Ahmed, M. F., & Rahaman, M. M. (2000). Water supply and sanitation—low income urban communities. Dhaka: International Training Network (ITN) Centre, BUET.

    Google Scholar 

  • AIIH. (2001). Arsenic mitigation programme for technology and park on arsenic removal devices. In B. B. Basu (Ed.), Convenor director. Kolkata: School of Fundamental Research.

    Google Scholar 

  • Alauddin, M., Hussam, A., Khan, A. H., Habibuddowla, M., Rasul, S. B., Munir, A. K. M. (2001). Critical evaluation of a simple arsenic removal method for groundwater of Bangladesh, in Arsenic exposure and health effects IV. 4th International Conference on Arsenic Exposure and Health Effects, 441–451, San Diego, Calif., USA.

  • An, B., Steinwinder, T. R., & Zhao, D. (2005). Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Research, 39, 4993–5004.

    Article  CAS  Google Scholar 

  • Andrianisa, H. A., Ito, A., Sasaki, A., Aizawa, J., & Umita, T. (2008). Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride. Water Research, 42(19), 4809–4817.

    Article  CAS  Google Scholar 

  • Arai, Y., Elzinga, E. J., & Sparks, D. (2001). X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface. Journal of Colloid and Interface Science, 235, 80–88.

    Article  CAS  Google Scholar 

  • Arsenic symptoms, diagnosis and treatment update Summer 2002, Internet Available: http://www.Summer02arsenic.htm

  • Atzei, D., Ferri, T., Sadun, C., Sangiorgio, P., & Caminiti, R. (2001). Structural characterization of complexes between iminodiacetate blocked on styrene-divinylbenzene matrix (Chelex 100 resin) and Fe(III), Cr(III), and Zn(II) in solid phase by energy-dispersive X-ray diffraction. Journal of the American Chemical Society, 123, 2552–2558.

    Article  CAS  Google Scholar 

  • Badruzzaman, M., Westerhoff, P., & Knappe, D. R. U. (2004). Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Research, 38(18), 4002–4012.

    Article  CAS  Google Scholar 

  • Bagla, P., & Kaiser, J. (1996). India’s spreading health crisis draws global arsenic experts. Science, 274, 174–175.

    Article  CAS  Google Scholar 

  • Bajpai, S., & Chaudhuri, M. (1999). Removal of arsenic from ground water by manganese dioxide-coated sand. Journal of Environmental Engineering, 125(8), 782–784.

    Article  CAS  Google Scholar 

  • BAMWSP, DFID and WEB, Water Aid Bangladesh (2001). Rapid assessment of household level arsenic removal technologies, Phase-I and Phase-II, Dhaka, Final Report, WS Atkins International Limited.

  • Baskan, M. B., & Pala, A. (2010). A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination, 254(1–3), 42–48.

    Article  CAS  Google Scholar 

  • Battaglia-Brunet, F., Dictor, M. C., Garrido, F., et al. (2002). An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. Journal of Applied Microbiology, 93(4), 656–667.

    Article  CAS  Google Scholar 

  • Bearak, D. (1998) New Bangladesh disaster: wells that pump poison. The New York Times.

  • Bellack, E. (1971). Arsenic removal from potable water. Journal American Water Works Association, 63(7), 454.

    CAS  Google Scholar 

  • Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat environ. Science and Technology, 35(13), 2621–2626.

    Article  CAS  Google Scholar 

  • Bhaumik, M., Maity, A., Srinivasu, V. V., & Onyango, M. S. (2011). Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. Journal of Hazardous Materials, 190, 381–390.

    Article  CAS  Google Scholar 

  • Bissen, M., & Frimmel, F. H. (2003). Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochimica Hydrobiology, 31(2), 9–18.

    Article  CAS  Google Scholar 

  • Bothe, J. V., & Brown, P. W. (1999). Arsenic immobilization by calcium arsenate formation. Environmental Science & Technology, 33(21), 3806–3811.

    Article  CAS  Google Scholar 

  • Bringas, E., Saiz, J., & Ortiz, I. (2015). Removal of As(V) from groundwater using functionalized magnetic adsorbent materials: effects of competing ions. Separation and Purification Technology, 156, 699–707.

    Article  CAS  Google Scholar 

  • Brömssen, M., Genesis of high arsenic groundwater in the Bengal Delta Plains, West-Bengal, Bangladesh, Thesis Report Series 1999:18, Division of L, Water Resources, Department of Civil, Environmental Engineering Royal Institute of Technology, Stockholm, Sweden.

  • Buswell, A. M. (1943). War problems in analysis and treatment. Journal American Water Works Association, 35(10), 1303.

    CAS  Google Scholar 

  • Chanda, M., O’Driscoll, F. K., & Rempel, G. L. (1988). Ligand exchange sorption of arsenate and arsenite anions by chelating in ferric ion form; II. Iminodiacetic chelating resin Chelex 100. Reactive Polymers, 8, 85.

    CAS  Google Scholar 

  • Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I.-C., & Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 4(7), 3979–3986.

    Article  CAS  Google Scholar 

  • Chatterjee, A., Das, D., & Chakraborti, D. (1993). A study of ground water contamination by arsenic in the residential area of Behala, Calcutta due to industrial pollution. Environmental Pollution, 80, 57–65.

    Article  CAS  Google Scholar 

  • Chen, H. W., Frey, M. M., Clifford, D., McNeill, L. S., & Edwards, M. (1999). Arsenic treatment considerations. Journal American Water Works Association, 91(3), 74–85.

    CAS  Google Scholar 

  • Cheng, R. C., Liang, S., Wang, H. C., & Beuhler, M. D. (1994). Enhanced coagulation for arsenic removal. Journal American Water Works Association, 86(9), 79–90.

    CAS  Google Scholar 

  • Chiew, H., Sampson, M. L., Huch, S., Ken, S., & Bostick, B. C. (2009). Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended bios and filters. Environmental Science and Technology, 43(16), 6295–6300.

    Article  CAS  Google Scholar 

  • Choong, T. S. Y., Chuah, T. G., Robiah, Y., Koay, F. L. G., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217(1–3), 139–166.

    Article  CAS  Google Scholar 

  • Chowdhury, U. K., Biswas, B. K., Chowdhury, T. R., Samanta, G., Mandal, B. K., Basu, G. C., Chanda, C. R., Lodh, D., Saha, K. C., Mukherjee, S. K., Roy, S., Kabir, S., Quamruzzman, Q., & Chakraborti, D. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environmental Health Perspectives, 108, 393–397.

    Article  CAS  Google Scholar 

  • Clifford, D. (1986). Removing dissolved inorganic contaminants from water. Environmental Science and Technology, 20, 1072–1080.

    Article  CAS  Google Scholar 

  • Clifford, D. (1999). Ion exchange and inorganic adsorption. In A. Letterman (Ed.), Water quality and treatment. New York: American Water Works Association, McGraw Hill.

    Google Scholar 

  • Criscuoli, A., Majumdar, S., Figoli, A., et al. (2012). As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules. Journal of Hazardous Materials, 211-212, 281–287.

    Article  CAS  Google Scholar 

  • Croal, L. R., Gralnick, J. A., Malasarn, D., & Dianne, K. N. (2004). The genetics of geochemisty. Annual Review of Genetics, 38(1), 175–202.

    Article  CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89(4), 713–764.

    Article  CAS  Google Scholar 

  • Dambies, L., Guibal, E., & Roze, A. (2000). Arsenic(V) sorption on molybdate-impregnated chitosan beads. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 170(1), 19–31.

    Article  CAS  Google Scholar 

  • Dambies, L., Vincent, T., Domard, A., & Guibal, E. (2001). Preparation of chitosan gel beads by ionotropic molybdate gelation. Biomacromolecules, 2(4), 1198–1205.

    Article  CAS  Google Scholar 

  • Das, D., Chatterjee, A., Mandal, B. K., Samanta, G., Chakraborti, D., & Chanda, B. (1995). Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. The Analyst, 120, 917–924.

    Article  CAS  Google Scholar 

  • Dhar, R. K., Biswas, B. K., Samanta, G., Mandal, B. K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A. W., Ahmed, S. A., & Hadi, S. A. (1997). Groundwater arsenic calamity in Bangladesh. Current Science, 73(1), 48–59.

    CAS  Google Scholar 

  • Dodd, M. C., Vu, N. D., Ammann, A., et al. (2006). Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment. Environmental Science and Technology, 40(10), 3285–3292.

    Article  CAS  Google Scholar 

  • Draget, K. I., Varum, K. J., Moen, E., Gynnild, H., & Smidsrod, O. (1992). Chitosan cross-linked with Mo(VI) polyoxyanions: a new gelling system. Biomaterials, 13(9), 635.

    Article  CAS  Google Scholar 

  • Driehaus, W., Jekel, M., & Hildebrandt, U. (1998). Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water. Journal of Water Supply: Research and Technology, 47(1), 30–35.

    CAS  Google Scholar 

  • Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270–275.

    Article  CAS  Google Scholar 

  • EAWAG 1999 SODIS. http://www.sodis.ch/. Access Date January, 2000.

  • Edwards, M. (1994). Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. Journal American Water Works Association, 86(9), 64–78.

    CAS  Google Scholar 

  • Edwards, M., Patel, S., McNeill, L., Chen, H. W., Frey, M., Eaton, A. D., Antweiler, R. C., & Taylor, H. E. (1998). Considerations in arsenic analysis and speciation. Journal American Water Works Association, 90(3), 103–113.

    CAS  Google Scholar 

  • Elizalde-Gonzalez, M. P., Mattusch, J., Wennrich, R., & Morgenstern, P. (2001). Sorption on natural solids for arsenic removal. Chemical Engineering Journal, 81, 187–195.

    Article  CAS  Google Scholar 

  • Emett, M. T., & Khoe, G. H. (2001). Photochemical oxidation of arsenic by oxygen and iron in acidic solutions. Water Research, 35(3), 649–656.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (2001). Arsenic in drinking water: health effects research. Available: http://www.epa.gov/safewater/ars/ars10.html

  • EPA. (2000). Arsenic removal from drinking water by ion exchange and activated alumina plants (EPA/600/R-00/088). Cincinnati: Office of Research and Development.

    Google Scholar 

  • Fendorf, S. E., Matthew, J. E., Grossel, P., & Sparks, D. L. (1997). Arsenate and chromate retention mechanism on goethite. 1. Surface structure. Environmental Science and Technology, 31, 315–320.

    Article  CAS  Google Scholar 

  • Ferguson, J. F., & Gavis, J. (1972). A review of the arsenic cycle in natural waters. Water Research, 6(11), 1259–1274.

    Article  CAS  Google Scholar 

  • Ficklin, W. H. (1983). Separation of As(III) and As(V) in ground waters by ion exchange. Talanta, 30(5), 371.

    Article  CAS  Google Scholar 

  • Fierro, V., Muñiz, G., Gonzalez-Sánchez, G., Ballinas, M. L., & Celzard, A. (2009). Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. Journal of Hazardous Materials, 168, 430–437.

    Article  CAS  Google Scholar 

  • Fox, K. R. (1989). Field experience with point-of-use treatment systems for arsenic removal. Journal American Water Works Association, 81(2), 94–101.

    CAS  Google Scholar 

  • Francesconi, K. A., & Kuehnelt, D. (2002). Arsenic compounds in the environment. In W. T. Frankenberger Jr. (Ed.), Environmental chemistry of arsenic (p. 56). New York: Marcel Dekker, Inc..

    Google Scholar 

  • Fryxell, G. E., Liu, J., Hauser, T. A., Nie, Z., Ferris, K. F., Mattigod, S., Gong, M., & Hallen, R. T. (1999). Design and synthesis of selective mesoporous anion traps. Chemical Materials, 11, 2148–2154.

    Article  CAS  Google Scholar 

  • Gallagher, P. A., Schewegel, C. A., Wei, X., & Creed, J. T. (2001). Speciation and preservation of inorganic arsenic in drinking water sources using EDTA with IC separation and ICP-MS detection. Journal of Environmental Monitoring, 3, 371–376.

    Article  CAS  Google Scholar 

  • Gallard, H., & Gunten, U. V. (2002). Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Research, 36(1), 65–74.

    Article  CAS  Google Scholar 

  • Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., Hobza, P., Zboril, R., & Kim, K. S. (2012). Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chemical Reviews, 112, 6156–6214.

    Article  CAS  Google Scholar 

  • Ghurye, G., Clifford, D. (2000). Laboratory study on the oxidation of As(III) to As(V). Proceedings, AWWA Water Quality Technology Conference.

  • Ghurye, G., & Clifford, D. (2004). As(III) oxidation using chemical and solid-phase oxidants. Journal. American Water Works Association, 96(1), 84–96.

    CAS  Google Scholar 

  • Ghurye, G., Clifford, D., & Tripp, A. (1999). Combined arsenic and nitrate removal by ion exchange. Journal American Water Works Association, 91(10), 85–96.

    CAS  Google Scholar 

  • Giles, D. E., Mohapatra, M., Issa, T. B., Anand, S., & Singh, P. (2011). Iron and aluminium based adsorption strategies for removing arsenic from water. Journal of Environmental Management, 92(12), 3011–3022.

    Article  CAS  Google Scholar 

  • Gomez-Pastora, J., Bringas, E., & Ortiz, I. (2014). Recent progress and future challenges on the use of high performance magnetic nanoadsorbents in environmental applications. Chemical Engineering Journal, 256, 187–204.

    Article  CAS  Google Scholar 

  • Grafe, M., Eick, M. J., & Grossl, P. R. (2001). Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Science Society of America Journal, 65(6), 1680–1687.

    Article  CAS  Google Scholar 

  • Guan, X. H., Wang, J., & Chusuei, C. C. (2008). Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies. Journal of Hazardous Materials, 156(1–3), 178–185.

    Article  CAS  Google Scholar 

  • Guenegou, T., Tambute, A., Jardy, A., & Caude, M. (1998). Elimination of arsenic traces contained in liquid effluents by chromatographic treatment. Analusis, 26, 352–357.

    Article  CAS  Google Scholar 

  • Gupta, S. K., & Chen, K. Y. (1978). Arsenic removal by adsorption. Journal Water Pollution Control Federation, Johnston and Heijnen, 50, 493–506.

    CAS  Google Scholar 

  • Haron, M. J., Yunus, M. Z. W., Sukari, M. A., Wum, L. T., & Tokugana, S. (1997). Removal of arsenic(V) by cerium(III) complexed chelating ion exchanger. The Malaysian Journal of Analytical Sciences, 3(1), 193.

    Google Scholar 

  • Haron, M. J., Wan Yunus, W. M., Yong, N. L., & Tokunaga, S. (1999). Sorption of arsenate and arsenite anions by iron(III)-poly(hydroxamic acid) complex. Chemosphere, 39(14), 2459–2466.

    Article  CAS  Google Scholar 

  • Harvard University. The arsenic project website. http://phys4.harvard.edu/~wilson/arsenic_project_introduction.html

  • Heijnen, H. (2003). Criteria for selection of technologies for arsenic mitigation. In Arsenic contamination: Bangladesh perspective (pp. 429–441). Dhaka: ITN.

    Google Scholar 

  • Helfferich, F. G. (1961). Ligand exchange: a novel separation technique. Nature, 189, 1001–1002.

    Article  CAS  Google Scholar 

  • Helfferich, F. G. (1962). Ion exchange. London and New York: McGraw-Hill Book Company.

    Google Scholar 

  • Hering, J. G., Chen, P. Y., Wilkie, J. A., Elimelech, M., & Liang, S. (1996). Arsenic removal by ferric chloride. Journal. American Water Works Association, 88(4), 155–167.

    CAS  Google Scholar 

  • Hering, J. G., Chen, P., Wilkie, J. A., & Elimelech, M. (1997). Arsenic removal from drinking water during coagulation. Journal of Environmental Engineering, ASCE, 123(8), 800–807.

    Article  CAS  Google Scholar 

  • Himeno, S., Hashimoto, M., & Ueda, T. (1999). Formation and conversion of molybdophosphate and arsenate complexes in aqueous solution. Inorganica Chimica Acta, 284, 237–245.

    Article  CAS  Google Scholar 

  • Hu, C., Liu, H., Chen, G., & Qu, J. (2012). Effect of aluminum speciation on arsenic removal during coagulation process. Separation and Purification Technology, 86, 35–40.

    Article  CAS  Google Scholar 

  • Hussam, A., & Munir, A. K. M. (2007). A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh. Journal of Environmental Science and Health A Toxic/Hazardous Substances and Environmental Engineering, 42(12), 1869–1878.

    Article  CAS  Google Scholar 

  • Inskeep, W. P. (2002). Arsenic(V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In W. T. Frankenberger Jr. (Ed.), Environmental chemistry of arsenic (p. 183). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Irving, H. M. N. H., Williams, R. J. P. (1953). The stability of transition-metal complexes. Journal of the Chemical Society. 3192–3210. https://doi.org/10.1039/JR9530003192.

  • Jain, C. K., & Singh, R. D. (2012). Technological options for the removal of arsenic with special reference to South East Asia. Journal of Environmental Management, 107, 1–18.

    Article  CAS  Google Scholar 

  • Jekel, M. R. (1994). Removal of arsenic in drinking water treatment. In J. O. Nriagu (Ed.), Arsenic in the environment. Part 1: cycling and characterization (pp. 119–130). New York: Wiley.

    Google Scholar 

  • Jekel, M., & Seith, R. (2000). Comparison of conventional and new techniques for the removal of arsenic in a full scale water treatment plant. Water Supply, 18, 628–631.

    CAS  Google Scholar 

  • Joshi, A., & Chaudhury, M. (1996). Removal of arsenic from groundwater by iron-oxide-coated sand. ASCE Journal of Environmental Engineering, 122(8), 769–771.

    Article  CAS  Google Scholar 

  • Jubinka, L., & Rajakovic, V. (1992). The sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Separation Science and Technology, 27(11), 1423–1433.

    Article  Google Scholar 

  • Kanematsu, M., Young, T. M., Fukushi, K., Green, P. G., & Darby, J. L. (2013). Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochimica et Cosmochimica Acta, 106, 404–428.

    Article  CAS  Google Scholar 

  • Kanesato, H., Yokoyamo, T., & Suzuki, T. M. (1988). Selective sorption of fluoride ion by La(III)-loaded chelating resin having phosphonomethylamino groups. Chemistry Letters, 2(2), 207–210.

    Article  Google Scholar 

  • Karcher, S., Caceres, L., Jekel, M., & Contreras, R. (1999). Arsenic removal from water supplies in Northern Chile using ferric chloride coagulation. Journal of the Chartered Institution of Water and Environmental Management, 13(3), 164–169.

    Article  CAS  Google Scholar 

  • Kartinen Jr., E. O., & Martin, C. J. (1995). An overview of arsenic removal processes. Desalination, 103(1–2), 79–88.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2004). Application of biological processes for the removal of arsenic from ground waters. Water Research, 38(1), 17–26.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I., Zouboulis, A., Althoff, H., & Bartel, H. (2002). As(III) removal from ground waters using fixed-bed up flow bioreactors. Chemosphere, 47(3), 325–332.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Zouboulis, A. I., & Jekel, M. (2004). Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxides during groundwater treatment. Industrial and Engineering Chemistry Research, 43(2), 486–493.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science and Technology, 42(19), 7424–7430.

    Article  CAS  Google Scholar 

  • Kemp, K. C., Seema, H., Saleh, M., Le, N. H., Mahesh, K., Chandra, V., & Kim, K. S. (2013). Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale, 5, 3149–3171.

    Article  CAS  Google Scholar 

  • Kepner, B., Spotts, J., Mintz, E., Cortopassi, E., Abrahams, P., Gray, C., Matur, S. (1998). Removal of arsenic from drinking water with enhanced hybrid aluminas and composite metal oxide particles. Presentation at the Feb. 1998 International Conference on Arsenic Pollution of Groundwater: Causes, Effects, Remedies, Dhaka Community Hospital, Dhaka, Bangladesh.

  • Khair, A. (2000). Factors responsible for the presence of arsenic in groundwater: Bangladesh context. In M. F. Ahmed (Ed.), Bangladesh environment—2000 (pp. 198–209). Bangladesh: Poribesh Andolon.

    Google Scholar 

  • Khan, A. H., Rasul, S. B., Munir, A., Habibuddowla, M., Alauddin, M., Newaz, S. S., & Hussan, A. (2000). Appraisal of a simple arsenic removal method for groundwater of Bangladesh. Journal of Environmental Science and Health, 35(7), 1021–1041.

    Article  Google Scholar 

  • Kim, M. J., & Nriagu, J. (2000). Oxidation of arsenite in groundwater using ozone and oxygen. Science of the Total Environment, 247(1), 71–79.

    Article  CAS  Google Scholar 

  • Klas, S., & Kirk, D. W. (2013). Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron. Journal of Hazardous Materials, 252-253, 77–82.

    Article  CAS  Google Scholar 

  • Korngold, E., Belayev, N., & Aronov, L. (2001). Removal of arsenic from drinking water by anion exchangers. Desalination, 141, 81–84.

    Article  CAS  Google Scholar 

  • Kunzru, S., & Chaudhuri, M. (2005). Manganese amended activated alumina for adsorption/oxidation of arsenic. Journal of Environmental Engineering, 131(9), 1350–1353.

    Article  CAS  Google Scholar 

  • Kuriakose, S., Singh, T. S., & Pant, K. K. (2004). Adsorption of As(III) from aqueous solution onto iron oxide impregnated activated alumina. Water Quality Research Journal of Canada, 39(3), 258–266.

    CAS  Google Scholar 

  • Lacasa, E., Cãnizares, P., Sáez, C., Fernández, F. J., & Rodrigo, M. A. (2011). Removal of arsenic by iron and aluminium electrochemically assisted coagulation. Separation and Purification Technology, 79(1), 15–19.

    Article  CAS  Google Scholar 

  • Lakshmanan, D., Clifford, D. A., & Samanta, G. (2010). Comparative study of arsenic removal by iron using electro coagulation and chemical coagulation. Water Research, 44(19), 5641–5652.

    Article  CAS  Google Scholar 

  • Laverman, A. M., Blum, J. S., Schaefer, J. K., Phillips, E. J. P., Lovley, D. R., & Oremland, R. S. (1995). Growth of strain SES-3 with arsenate and other diverse electron acceptors. Applied and Environmental Microbiology, 61(10), 3556–3561.

    CAS  Google Scholar 

  • Lee, Y., Um, I. H., & Yoon, J. (2003). Arsenic (III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic (V) by iron (III) coagulation. Environmental Science and Technology, 37(24), 5750–5756.

    Article  CAS  Google Scholar 

  • Lepkowski, W. (1998). Arsenic crisis in Bangladesh. C&EN News, November 16, 27–29.

  • Letterman, A. (Ed.). (1999). Water quality and treatment: a handbook of community water supplies. McGraw-Hill, New York: American Water Works Association.

    Google Scholar 

  • Leupin, O. X., & Hug, S. J. (2005). Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research, 39(9), 1729–1740.

    Article  CAS  Google Scholar 

  • Li, Z., Jean, J. S., Jiang, W. T., Chang, P. H., Chen, C. J., & Liao, L. (2011). Removal of arsenic from water using Fe-exchanged natural zeolite. Journal of Hazardous Materials, 187, 318–323.

    Article  CAS  Google Scholar 

  • Lin, T. F., & Wu, J. K. (2001). Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Research, 35(8), 2049–2057.

    Article  CAS  Google Scholar 

  • Lorenzen, L., Van Deventer, J. S. J., & Landi, W. M. (1995). Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Minerals Engineering, 8(4–5), 557–569.

    Article  CAS  Google Scholar 

  • Luo, X., Wang, C., Luo, S., Dong, R., Tu, X., & Zeng, G. (2012). Chemical Engineering Journal, 187, 45.

    Article  CAS  Google Scholar 

  • Ma, L., Islam, S. M., Liu, H., Zhao, J., Sun, G., Li, H., Ma, S., & Kanatzidis, M. G. (2017). Selective and efficient removal of toxic oxoanions of As(III), As(V), and Cr(VI) by layered double hydroxide intercalated with MoS4 2−. Chemistry of Materials, 29, 3274–3284.

    Article  CAS  Google Scholar 

  • Macy, J. M., Santini, J. M., Pauling, B. V., O’Neill, A. H., & Sly, L. I. (2000). Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Archives of Microbiology, 173(1), 49–57.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1996). Modelling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal, 60(1), 121–131.

    Article  CAS  Google Scholar 

  • Manning, A. B., Fendorf, E. S., Bostick, B., & Suarez, L. D. (2002). Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environmental Science and Technology, 36(5), 976–981.

    Article  CAS  Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D., & Patrick Jr., W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25(8), 1414–1419.

    Article  CAS  Google Scholar 

  • Matsunaga, H., Yokoyama, T., Eldridge, R. J., & Bolto, B. A. (1996). Adsorption characteristics of As(III) and As(V) on iron(III) -loaded chelating resin having lysine-Nα, Nα-diacetic acid moiety. Reactive and Functional Polymers, 29, 167.

    Article  CAS  Google Scholar 

  • Mazumder, G., et al. (1998). International Journal of Epidemiology, 27, 871.

    Article  Google Scholar 

  • McNeill, L. S., & Edwards, M. (1995). Soluble arsenic removal at water treatment plants. Journal American Water Works Association, 87(4), 105–113.

    CAS  Google Scholar 

  • Miller, S. M., & Zimmerman, J. B. (2010). Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Research, 44(19), 5722–5729.

    Article  CAS  Google Scholar 

  • Miller, S. M., Spaulding, M. L., & Zimmerman, J. B. (2011). Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Research, 45(17), 5745–5754.

    Article  CAS  Google Scholar 

  • Min, J. H., & Hering, J. G. (1999). Arsenic sorption by Fe(III)-doped alginate gels. Water Research, 32(5), 1544–1552.

    Article  Google Scholar 

  • Mohan, D., & Pittman Jr., C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142(1–2), 1–53.

    Article  CAS  Google Scholar 

  • Mohanty, D., & Samal, S. (2009). Selective removal of toxic metals like copper and arsenic from drinking water by using phenol-formaldehyde type chelating resins. E-Journal of Chemistry, 6(4), 1035–1046.

    Article  CAS  Google Scholar 

  • Mohanty, D., Acharya, S., & Samal, S. (2013). Selective removal of toxic and heavy metal ions like arsenic and copper from drinking water by using novel chelating resins immobilized on silica gel. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(1), 43–58.

    CAS  Google Scholar 

  • Mok, W. M., & Wai, C. M. (1994). In J. O. Nriagu (Ed.), Mobilization of arsenic in contaminated river water in arsenic in the environment. New York: John Wiley & Sons Inc.

    Google Scholar 

  • Molnar, L., Vircikova, E., & Lech, P. (1994). Experimental study of As(III) oxidation by hydrogen peroxide. Hydrometallurgy, 35, 1–7.

    Article  CAS  Google Scholar 

  • Murcott, S. (2000). A comprehensive review of low-cost, well-water treatment technologies for arsenic removal. http://phys4.harvard.edu/~wilson,/murcott2.html.

  • Neumann, A., Kaegi, R., Voegelin, A., Hussam, A., Munir, A. K. M., & Hug, S. J. (2013). Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study. Environmental Science and Technology, 47(9), 4544–4554.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning in Bangladesh groundwater. Nature, 395, 338.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413.

    Article  CAS  Google Scholar 

  • Nieminski, E., & Evans, D. (1995). Pilot testing of trace metals removal with ozone at Snowbird Ski Resort. Ozone Science Engineering, 17(3), 297–309.

    Article  CAS  Google Scholar 

  • Nieto-Delgado, C., & Rangel-Mendez, J. R. (2012). Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water. Water Research, 46, 2973–2982.

    Article  CAS  Google Scholar 

  • Nikolaidis, N.P., Lackovic, J. (1998). Arsenic Remediation Technology-AsRT, presented at International Conference on Arsenic Pollution of Ground Water in Bangladesh: Causes, Effect and Remedies, Dhaka, 8–12 February.

  • Oh, J. I., Yamamoto, K. K., Kitawaki, H., Nakao, S., Sugawara, T., Rahaman, M. M., & Rahaman, M. H. (2000). Application of low-pressure nanofiltration coupled with a bicycle pump for the treatment of arsenic-contaminated groundwater. Desalination, 132, 307–314.

    Article  CAS  Google Scholar 

  • Oremland, R. S., & Stolz, J. F. (2005). Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13(2), 45–49.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Saltikov, C. W., Wolfe-Simon, F., & Stolz, J. F. (2009). Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiology Journal, 26(7), 522–536.

    Article  CAS  Google Scholar 

  • Pallier, V., Feuillade-Cathalifaud, G., Serpaud, B., & Bollinger, J. C. (2010). Effect of organic matter on arsenic removal during coagulation/flocculation treatment. Journal of Colloid and Interface Science, 342(1), 26–32.

    Article  CAS  Google Scholar 

  • Pattanayak, J., Mondal, K., Mathew, S., & Lalvani, S. B. (2000). A parametric evaluation of the removal of as(V) and as(III) by carbon-based adsorbents. Carbon, 38, 589–596.

    Article  CAS  Google Scholar 

  • Penke, Y. K., Anantharaman, G., Ramkumar, J., & Kar, K. K. (2017). Aluminum substituted cobalt ferrite (Co−Al−Fe) nano adsorbent for arsenic adsorption in aqueous systems and detailed redox behavior study with XPS. Applied Materials & Interfaces, 9, 11587–11598.

    Article  CAS  Google Scholar 

  • Petala, E., Georgiou, Y., Kostas, V., Dimos, K., Karakassides, M. A., Deligiannakis, Y., Aparicio, C., Tuček, J., & Zbořil, R. (2017). Magnetic carbon nanocages: an advanced architecture with surface- and morphology-enhanced removal capacity for arsenites. Sustainable Chemistry & Engineering, 5, 5782–5792.

    Article  CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Resources, 16, 1247–1253.

    CAS  Google Scholar 

  • Pontius, F. W. (Ed.). (1990). Water quality treatment: a handbook of community water supplies. McGraw-Hill, New York: American Water Works Association.

    Google Scholar 

  • Rajakovic, V., & Mitrovicm, M. (1992). Arsenic removal from water by chemisorption filters. Environmental Pollution, 75(3), 279–287.

    Article  CAS  Google Scholar 

  • Ramana, A., & Sengupta, A. (1992). Removing selenium(IV) and arsenic(V) oxyanions with tailored chelating polymers. Journal of Environmental Engineering, 118(5), 755–775.

    Article  CAS  Google Scholar 

  • Ramaswami, A., Tawachsupa, S., & Isleyen, M. (2001). Batch-mixed iron treatment of high arsenic waters. Water Research, 35(18), 4474–4479.

    Article  CAS  Google Scholar 

  • Raven, K. P., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology, 32(3), 344–349.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: a global synthesis. West Sussex: Wiley.

    Book  Google Scholar 

  • Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science Technology, 36, 2889–2896.

    Article  CAS  Google Scholar 

  • Rosenblum, E., & Clifford, D. (1984). The equilibrium capacity of activated alumina. EPA-600/S2-83-107. Washington: USEPA.

    Google Scholar 

  • Rubel, F. J., & Woosely, R. D. (1979). The removal of fluoride from drinking water by activated alumina. Journal American Water Works Association, 71(1), 45–48.

    Google Scholar 

  • Sahu, T. K., Arora, S., Banik, A., Iye, R. P. K., & Qureshi, M. (2017). Efficient and rapid removal of environmental malignant arsenic(III) and industrial dyes using reusable, recoverable ternary iron oxide—ORMOSIL—reduced graphene oxide composite. Sustainable Chemistry & Engineering, 5, 5912–5921.

    Article  CAS  Google Scholar 

  • Saiz, J., Bringas, E., & Ortiz, I. (2014). New functionalized magnetic materials for As5+ removal: adsorbent regeneration and reuse. Industrial and Engineering Chemistry Research, 53, 18928–18934.

    Article  CAS  Google Scholar 

  • Santini, J. M., Sly, L. I., Schnagl, R. D., & Macy, J. M. (2000). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Applied and Environmental Microbiology, 66(1), 92–97.

    Article  CAS  Google Scholar 

  • Sarkar, S., Greenleaf, J. E., Gupta, A., et al. (2010). Evolution of community-based arsenic removal systems in remote villages in West Bengal, India: assessment of decade-long operation. Water Research, 44(19), 5813–5822.

    Article  CAS  Google Scholar 

  • Shen, Y. S. (1973). Study of arsenic removal from drinking water. Journal American Water Works Association, 65(8), 543–548.

    CAS  Google Scholar 

  • Shen, W. J., Mu, Y., Xiao, T., & Ai, Z. H. (2016). Magnetic Fe3O4-FeS nanocomposites with promoted Cr(VI) removal performance. Chemical Engineering Journal, 285, 57–68.

    Article  CAS  Google Scholar 

  • Singh, T. S., & Pant, K. K. (2004). Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Separation and Purification Technology, 36(2), 139–147.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburg, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydro geochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284.

    Article  CAS  Google Scholar 

  • Song, S., Valdivieso, A. L., Campos, D. J. H., Peng, C., Fernandez, M. G. M., & Soto, I. R. (2006). Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Research, 40(2), 364–372.

    Article  CAS  Google Scholar 

  • Sorg, T. J., & Logsdon, G. S. (1978). Treatment technology to meet the interim primary drinking water regulations for inorganic: part 2. Journal of the American Water Works Association, 70(7), 379–393.

    CAS  Google Scholar 

  • Su, C., & Puls, W. R. (2001). Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environmental Science & Technology, 35, 1487–1492.

    Article  CAS  Google Scholar 

  • Suzuki, T. M., Tanco, M. L., Tanaka, D. A. P., Matsugana, H., & Yokoyama, T. (2001). Adsorption characteristics and removal of oxy-anions or arsenic and selenium on the porous polymers loaded with monoclinic hydrous zirconium oxide. Separation Science and Technology, 36(1), 103–111.

    Article  CAS  Google Scholar 

  • Tang, S. C. N., & Lo, I. M. C. (2013). Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Research, 47, 2613–2632.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavan, T., Subramanian, K. S., & Tanjore, S. (2002). Organic arsenic removal from drinking water. Urban Water, 4, 415–421.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using granular ferric hydroxide. Water SA, 29(2), 161–170.

    Article  CAS  Google Scholar 

  • Tokunaga, S., Wasay, S. A., & Park, S. W. (1997). Removal of arsenic(V) ion from aqueous solutions by lanthanum compounds. Water Science Technology, 35(7), 71–78.

    CAS  Google Scholar 

  • Tripathy, S. S., & Raichur, A. M. (2008). Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(V) from water. Chemical Engineering Journal, 138(1–3), 179–186.

    Article  CAS  Google Scholar 

  • Trung, D. Q., Anh, C. H., Trung, N. X., Yasaka, Y., Fujita, M., & Tanaka, M. (2001). Preconcentration of arsenic species in environmental waters by solid phase extraction using metal-loaded chelating resins. Analytical Sciences, 17, 1219–1222.

    Google Scholar 

  • Trussell, R. R., Trussell, A., & Kreft, P. (1980). Selenium removal from groundwater using activated alumina. 600/2-80-153. Cincinnati: USEPA.

    Google Scholar 

  • United Nations Foundation. Arsenic poisoning in Bangladesh, West Bengal, a U.N. Foundation Report, 1999.

  • Vadahanambi, S., Lee, S. H., Kim, W. J., & Oh, I. K. (2013). Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environmental Science & Technology, 47, 10510–10517.

    CAS  Google Scholar 

  • Viraraghavan, T., Subramanian, K. S., & Aruldoss, J. A. (1999). Arsenic in drinking water—problems and solutions. Water Science and Technology, 40(2), 69–76.

    CAS  Google Scholar 

  • Vu, K. B., Kaminski, M. D., & Nuñez, L. (2003.) Review of arsenic removal technologies for contaminated groundwaters. http://www.doe.gov/bridge.

  • Waypa, J. J., Elimelech, M., & Hering, J. G. (1997). Arsenic removal by RO and NF membranes. Journal American Water Works Association, 89(10), 102–116.

    CAS  Google Scholar 

  • Wilkie, J. A., & Hering, J. G. (1996). Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 107, 97–110.

    Article  CAS  Google Scholar 

  • World Health Organization (2001). Arsenic in drinking water. Available: http://www.who.int/inf-fs/en/fact210.html

  • Yamani, J. S., Miller, S. M., Spaulding, M. L., & Zimmerman, J. B. (2012). Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Research, 46(14), 4427–4434.

    Article  CAS  Google Scholar 

  • Yoshida, I., Ueno, K., & Kobayashi, H. (1978). Selective separation of As(III) and As(V) ions with iron(III) complex of chelating ion exchange resin. Separation Science and Technology, 13(2), 173.

    Article  Google Scholar 

  • Yoshida, I., Nishimura, M., Matsuo, K., & Uno, K. (1983). Studies on selective adsorption of anion by metal-ion loaded ion exchange resin V. Adsorption of phosphate ion on ion exchange resin loaded with zirconium(IV), IRC 50-Zr(IV). Separation Science and Technology, 18(1), 73–82.

    Article  CAS  Google Scholar 

  • Yuan, P., Liu, D., Fan, M. D., Yang, D., Zhu, R. L., Ge, F., & Zhu, J. X. (2010). He, H. P. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of Hazardous Materials, 173, 614–621.

    Article  CAS  Google Scholar 

  • Zhang, K., Dwivedi, V., Chi, C., & Wu, J. (2010). Journal of Hazardous Materials, 182, 162.

    Article  CAS  Google Scholar 

  • Zhao, D., & SenGupta, A. K. (1998). Ultimate removal and recovery of phosphate from wastewater using a new class of polymeric exchangers. Water Research, 32(5), 1613–1625.

    Article  CAS  Google Scholar 

  • Zhu, X., & Jyo, A. (2001). Removal of As(V) by zirconium-(IV) loaded phosphoric acid chelating resin. Separation Science and Technology, 36(14), 3175–3189.

    Article  CAS  Google Scholar 

  • Zhu, J., Sadu, R., Wei, S., Chen, D. H., Haldolaarachchige, N., Luo, Z., Gomes, J. A., Young, D., & Guoa, Z. (2012). ECS Journal of Solid State Science and Technology, 1, M1.

    Article  CAS  Google Scholar 

  • Zhu, J., Pigna, M., Cozzolino, V., Caporale, A. G., & Violante, A. (2013). Higher sorption of arsenate versus arsenite on amorphous Al-oxide, effect of ligands. Environmental Chemistry Letters, 11(3), 289–294.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I., & Katsoyiannis, I. A. (2002). Arsenic removal using iron oxide loaded alginate beads. Industrial & Engineering Chemistry Research, 41(24), 6149–6155.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author highly acknowledges faculty members of the Department of Chemistry and the Principal, Dhenkanal (Auto) College for their constant encouragement for pursuing the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Mohanty.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflict of interests.

Additional information

Highlights

• The chemistry of arsenic in the environment is discussed.

• The source and effect of arsenic in the groundwater are studied.

• The conventional, modern, hybrid and new emerging technologies used for removal of arsenic are critically reviewed.

• The advantages and disadvantages of these technologies are also elaborately discussed.

• Some new innovative technologies like polymeric ligand exchanger and biological arsenic removal technologies are evaluated for their effectiveness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, D. Conventional as well as Emerging Arsenic Removal Technologies—a Critical Review. Water Air Soil Pollut 228, 381 (2017). https://doi.org/10.1007/s11270-017-3549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3549-4

Keywords

Navigation