Skip to main content

Advertisement

Log in

Evaluation of Water Quality for Sustainable Agriculture in Bangladesh

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sustainable groundwater quality has become a major concern for the agro-based country like Bangladesh. Integrated approaches of various irrigation water quality indices and geostatistical modeling were applied to evaluate the suitability and for spatial mapping of groundwater quality of Faridpur District in central Bangladesh. The irrigation water quality index (IWQI) revealed that majority of the samples were suitable for irrigation. Similar outcomes were recorded from other indices including Na%, sodium adsorption ratio (SAR), residual sodium bicarbonate (RSBC), total hardness (TH), Kelley’s ratio (KR), and magnesium adsorption ratio (MAR). Classifications based on Wilcox diagram and permeability index (PI) plot indicated a similar conclusion wherein almost all the samples were safe for agricultural uses without posing considerable effect on the soil fertility and overall crop yield. Principal component analysis (PCA) grouped the major cations and anions into three principal components including dissolution of calcite minerals, leaching of silicate sediments, and ion exchange process. Spatial mapping of IWQI identified that groundwater in the northern side of Faridpur region were more suitable for irrigational uses relative to central and southern side, possibly due to gradients of domestic discharges and agricultural activates from north to south side. These findings would provide useful information to water distributors, managers, and decision makers for taking adaptive measures in irrigation water quality management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ağca, N., Karanlık, S., & Ödemiş, B. (2014). Assessment of ammonium, nitrate, phosphate, and heavy metal pollution in groundwater from Amik plain, southern Turkey. Environmental Monitoring and Assessment, 186, 5921–5934.

    Article  Google Scholar 

  • APHA-AWWA-WEF. (2005). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: APHA, AWWA and WEF.

    Google Scholar 

  • Ayers, R. S. (1977). Quality of water for irrigation. Journal of Irrigation and Drainage Division ASCE, 103(IR2), 135–154.

    Google Scholar 

  • Ayers, R.S., & Westcot, D.W. (1985). Water quality for agriculture, FAO Irrigation and Drainage Paper 29, Rev. I, UN Food and Agriculture Organization, Rome.

  • Bahar, M. M., & Reza, M. S. (2010). Hydrochemical characteristics and quality assessment of shallow groundwater in a coastal area of Southwest Bangladesh. Environmental Earth Sciences, 61, 1065–1073.

    Article  CAS  Google Scholar 

  • Bhattacharya, A. K. (2010). Artificial ground water recharge with a special reference to India. International Journal of Research and Reviews in Applied Sciences, 4, 214–221.

    CAS  Google Scholar 

  • Bhuiyan, M. A. H., Ganyaglo, S., & Suzuki, S. (2014). Reconnaissance on the suitability of the available water resources for irrigation in Thakurgaon District of northwestern Bangladesh. Applied Water Science, 5, 229–239.

    Article  Google Scholar 

  • Bhuiyan, M. A. H., Bodrud-Doza, M., Islam, A. R. M. T., Rakib, M. A., Rahman, M. S., & Ramanathan, A. L. (2016). Assessment of groundwater quality of Lakshimpur district of Bangladesh using water quality indices, geostatistical methods, and multivariate analysis. Environmental Earth Sciences, 75, 1020.

    Article  Google Scholar 

  • Bodrud-Doza, M., Islam, A. R. M. T., Ahmed, F., Das, S., Saha, N., & Rahman, M. S. (2016). Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Science Journal, 30, 19–40.

    Article  Google Scholar 

  • Boyacioglu, H. (2007). Development of a water quality index based on a European classification scheme. Water SA, 33, 101–106.

    CAS  Google Scholar 

  • Bozdag, A. (2015). Combining AHP with GIS for assessment of irrigation water quality in Cumra irrigation district (Konya), Central Anatolia, Turkey. Environmental Earth Sciences, 73, 8217–8236.

    Article  CAS  Google Scholar 

  • Debels, P., Figueroa, R., Urrutia, R., Barra, R., & Niell, X. (2005). Evaluation of water quality in the Chillan River (Central Chile) using physicochemical parameters and a modified water quality index. Environmental Monitoring and Assessment, 110, 301–322.

    Article  CAS  Google Scholar 

  • Dixon, B. (2005). Groundwater vulnerability mapping: a GIS and fuzzy rule based integrated tool. Applied Geography, 25, 327–347.

    Article  Google Scholar 

  • DoE. (1997). The environment conservation rules. Dhaka: Government of the People’s Republic of Bangladesh.

    Google Scholar 

  • Doneen, L. D. (1964). Notes on water quality in agriculture, water science and engineering. Davis: University of California.

    Google Scholar 

  • FAO (1985). Water quality for agriculture. Food and Agriculture Organization. http://www.fao.org/docrep/003/T0234E/T0234E00.htm. Accessed 26 June 2016.

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (p. 56). New Jersey: Prentice-Hall.

    Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resource evaluation. New York: Oxford University Press.

    Google Scholar 

  • Gorai, A. K., & Kumar, S. (2013). Spatial distribution analysis of groundwater quality index using GIS: a case study of Ranchi municipal corporation (RMC) area. Geoinfor Geostat: An Overview, 1, 2. https://doi.org/10.4172/2327-4581.1000105.

    Google Scholar 

  • Gupta, S. K. (1983). Variations of water table in Yamuna drainage basin of Haryana-implications and management strategies. In Seminar on Strategies for Irrigation Water Management, Patna Google Scholar.

  • Gupta, S. K., & Gupta, I. C. (1987). Management of saline soils and waters. New Delhi: Oxford and IBH Publishing Company.

    Google Scholar 

  • Hakim, M. A., Juraimi, A. S., Begum, M., Hasanuzzaman, M., Uddin, M. K., & Islam, M. M. (2009). Suitability evaluation of groundwater for irrigation, drinking and industrial purposes. American Journal of Environmental Science, 5, 413–419.

    Article  CAS  Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37, 300–306.

    Google Scholar 

  • Hussain, H. M., Joshi, H., Singhal, D. C., Kumar, S., & Rao, M. S. (2012). Development of an index of aquifer water quality within GIS environment. Iran Journal of Earth Sciences, 4, 44–50.

    Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (p. 561). New York: Oxford University Press.

    Google Scholar 

  • Kelley, W. P. (1963). Use of saline irrigation water. Soil Science, 95, 355–391.

    Article  Google Scholar 

  • Kinniburgh, D.G., & Smedley, P.L. (2001). Arsenic contamination of groundwater in Bangladesh. BGS Technical Report WC/00/19, Vol. 2.

  • Kumari, S., Singh, A. K., Verma, A. K., & Yaduvanshi, N. P. S. (2013). Assessment and spatial distribution of groundwater quality in industrial areas of Ghaziabad, India. Environmental Monitoring and Assessment, 186, 501–514.

    Article  Google Scholar 

  • Liou, S., Lo, S., & Wang, S. (2004). A generalized water quality index for Taiwan. Environmental Monitoring and Assessment, 96, 35–52.

    Article  CAS  Google Scholar 

  • Liu, S., Tao, A., Dai, C., Tan, B., Shen, H., Zhong, G., Lou, S., Chalov, S., & Chalov, R. (2017). Experimental study of tidal effects on coastal groundwater and pollutant migration. Water, Air, & Soil Pollution, 228, 163.

    Article  Google Scholar 

  • Masoud, A. A. (2014). Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. Journal of African Earth Sciences, 95, 123–137.

    Article  CAS  Google Scholar 

  • Mertler, C. A., & Vannatta R.A. (2005). Advanced and multivariate statistical methods: practical application and interpretation (3rd ed), Glendale, CA. pp. 120.

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Transactions American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Raghunath, H. M. (1990). Ground water. Wiley eastern limited (2nd ed.p. 563). New Delhi.

  • Ragunath, H. M. (1987). Groundwater (p. 563). New Delhi: Wiley Eastern.

    Google Scholar 

  • Rahman, M. S., & Islam, M. R. (2009). Effects of pH on isotherms modeling for Cu(II) ions adsorption using maple wood sawdust. Chemical Engineering Journal, 149, 273–280.

    Article  CAS  Google Scholar 

  • Rahman, M.A.T.M.T., Saadat, A.H.M., Islam, M.S., Al-Mansur, M.A., & Ahmed, S. (2014a). Groundwater characterization and selection of suitable water type for irrigation in the western region of Bangladesh. Applied Water Science, 7, 233–243.

  • Rahman, M. S., Saha, N., & Molla, A. H. (2014b). Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environmental Earth Sciences, 71, 2293–2308.

    Article  CAS  Google Scholar 

  • Ravikumar, P., Somashekar, R. K., & Angami, M. (2011). Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India. Environmental Monitoring and Assessment, 173(1), 459–487.

  • Richards, L.A. (1954). Diagnosis and improvement of saline and alkaline soils, US Salinity Laboratory, US Department of Agriculture Hand Book, pp 60.

  • Romanelli, A., Lima, M. L., Londoño, O. M. Q., Martínez, D. E., & Massone, H. E. (2012). A Gis-based assessment of groundwater suitability for irrigation purposes in flat areas of the wet pampa plain, Argentina. Environmental Management, 50, 490–503.

    Article  Google Scholar 

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2016). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78.

    Article  Google Scholar 

  • Sahu, P., & Sikdar, P. K. (2008). Hydrochemical framework of the aquifer in and around East Kolkata wetlands, West Bengal. Environmental Geology, 55, 823–835.

    Article  CAS  Google Scholar 

  • Shahid, S. (2010). Recent trends in the climate of Bangladesh. Climate Research, 42, 185–193.

    Article  Google Scholar 

  • Shammi, M., Rahman, R., Rahman, M. M., Moniruzzaman, M., Bodrud-Doza, M., Karmakar, B., & Uddin, M. K. (2016). Assessment of salinity hazard in existing water resources for irrigation and potentiality of conjunctive uses: a case report from Gopalganj District, Bangladesh. Sustainable Water Resources Management, 2, 369–378.

    Article  Google Scholar 

  • Shi, J., Wang, H., Xu, J., Wu, J., Liu, X., Zhu, H., & Yu, C. (2007). Spatial distribution of heavy metals in soils: a case study of Changxing, China. Environmental Geology, 52, 1–10.

    Article  CAS  Google Scholar 

  • Simsek, C., & Gunduz, O. (2007). IWQ index: a GIS-integrated technique to assess irrigation water quality. Environmental Monitoring and Assessment, 128, 277–300.

    Article  CAS  Google Scholar 

  • Song, T., & Kim, K. (2009). Development of a water quality loading index based on water quality modeling. Journal of Environmental Management, 90, 1534–1543.

    Article  CAS  Google Scholar 

  • Tapoglou, E., Karatzas, G. P., Trichakis, J. C., & Varouchakis, E. A. (2014). A spatio-temporal hybrid neural network-kriging model for groundwaterlevel simulation. Journal of Hydrology, 519, 3193–3203.

    Article  Google Scholar 

  • Thorne, D. W., & Peterson, H. B. (1954). Irrigated soils. London: Constable and Company.

    Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Trivedy, R. K., & Geol, P. K. (1984). Chemical and biological methods for water pollution studies. Karad: Environ Publications.

    Google Scholar 

  • UCCC. (1974). Guidelines for interpretations of water quality for irrigation. California: University of California Committee of Consultants.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists (p. 330). New York: Wiley.

    Google Scholar 

  • WHO. (2004). Guidelines for drinking-water quality (3rd ed.). Geneva: WHO.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation water. Washington DC: US Department of Agriculture.

    Google Scholar 

  • Zhou, T., Wu, J., & Peng, S. (2012). Assessing the effects of landscape pattern on river water quality at multiple scales: a case study of the Dongjiang River watershed, China. Ecological Indicators, 23, 166–175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Environmental Sciences, Jahangirnagar University, Bangladesh and Chemistry Division, Atomic Energy Center, Dhaka Bangladesh for providing some technical supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Safiur Rahman or Narottam Saha.

Electronic supplementary material

ESM 1

(DOCX 40.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safiur Rahman, M., Saha, N., Islam, A.R.M.T. et al. Evaluation of Water Quality for Sustainable Agriculture in Bangladesh. Water Air Soil Pollut 228, 385 (2017). https://doi.org/10.1007/s11270-017-3543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3543-x

Keywords

Navigation