Skip to main content
Log in

Impact of Cr and Zn on Growth, Biochemical and Physiological Parameters, and Metal Accumulation by Wheat and Barley Plants

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effect of different Cr and Zn concentrations in the soil on the development of Albares wheat and Pedrezuela barley plants at the physiological, biochemical, and structural levels was evaluated during the crop cycle in a greenhouse assay, as well as their potential use in phytoremediation strategies. The accumulation of Cr and Zn in plants was dose-dependent for both cultivars. The highest contents were found in root and the lowest in grain. In the Cr treatments, the decrease with respect to the control in the biomass, relative water content (RWC), chlorophyll content (Chl), and chlorophyll fluorescence values (Fv/Fm) was more pronounced in wheat than in barley. For the Zn treatments, the behavior was the opposite. Barley showed less tolerance to Zn concentrations although its higher translocation factor (TF) and greater biomass make this plant adequate to use in phytoremediation process in soil contaminated with Zn. The electron microscopy studies showed evidence that treatment with both Cr and Zn produced alterations in the cellular ultrastructure of the plant leaves. Cr and Zn induced the production of malondialdehyde (MDA) in both cultivars; the highest concentrations were observed in barley leaves. In general, the ascorbate peroxidase activity (APX) was higher in the plants exposed to metal treatments. The catalase activity (CAT) showed a different behavior depending on the metal studied. These results highlight the potential capacity of Albares wheat for use in the phytoremediation of soils contaminated by Zn and of Pedrezuela barley for use in Cr- and Zn-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  • Ali, S., Zen, F., Qiu, L., & Zhang, G. (2011). The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biologia Plantarum, 55, 291–296.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91, 869–888.

    Article  CAS  Google Scholar 

  • Anjum, S. A., Tanveer, M., Hussain, S., Ashraf, U., Khan, I., & Wang, L. (2017). Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water, Air, and Soil Pollution, 228, 13. doi:10.1007/s11270-016-3187-2.

    Article  Google Scholar 

  • Appenroth, K., Keresztes, Á., Sárvári, É., Jaglarz, A., & Fischer, W. (2003). Multiple effects of chromate on Spirodela polyrhiza: electron microcopy and biochemical investigations. Plant Biology, 5, 315–323.

    Article  CAS  Google Scholar 

  • Aref, F. (2011). Concentration of zinc and boron in corn leaf as affected by zinc sulfate and boric acid fertilizers in a deficient soil. Life Science Journal, 8, 26–31.

    Google Scholar 

  • Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113.

    Article  CAS  Google Scholar 

  • Baran, A. (2013). Assessment of Zea mays sensitivity to toxic content of zinc in soil. Polish Journal of Environmental Studies, 22, 77–83.

    CAS  Google Scholar 

  • Barceló, J., Vázquez, M. D., & Poschenrieder, C. (1988). Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.) New Phytologist, 108, 37–49.

    Article  Google Scholar 

  • Barceló, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition, 13, 1–37.

    Article  Google Scholar 

  • Bonnet, M., Camares, O., & Veisseire, P. (2000). Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). Journal of Experimental Botany, 51, 945–953.

    CAS  Google Scholar 

  • Branzini, A., González, S. R., & Zubillaga, M. (2012). Absorption and translocation of copper, zinc and chromium by Sesbania virgate. Journal of Environmental Management, 102, 50–54.

    Article  CAS  Google Scholar 

  • Broadley, R., White, P. J., Hammond, J. P., Zelco, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173, 677–702.

    Article  CAS  Google Scholar 

  • Brunetti, G., Farrag, K., Soler-Rovira, P., Ferrara, M., Nigro, F., & Senesi, N. (2012). Heavy metals accumulation and distribution in durum wheat and barley grown in contaminated soils under Mediterranean field conditions. Journal of Plant Interactions, 7, 160–174.

    Article  CAS  Google Scholar 

  • Burzyński, M., & Żurek, A. (2007). Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica, 45, 239–244.

    Article  Google Scholar 

  • Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168, 521–530.

    Article  CAS  Google Scholar 

  • Clemens, S. (2017). How metal hyperaccumulating plants can advance Zn biofortification. Plant and Soil, 411, 111–120.

    Article  CAS  Google Scholar 

  • Diwan, H., Ahmad, A., & Iqbal, M. (2008). Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environmental Management, 41, 734–741.

    Article  Google Scholar 

  • Du, L., Xia, X., Lan, X., Liu, M., Zhao, L., Zhang, P., & Wu, Y. (2017). Influence of arsenic stress on physiological, biochemical, and morphological characteristics in seedlings of two cultivars of maize (Zea mays L.) Water Air Soil Pollution, 228, 55. doi:10.1007/s11270-016-3231-2.

    Article  Google Scholar 

  • Eapen, S., & D’Souza, S. F. (2005). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances, 23, 97–114.

    Article  CAS  Google Scholar 

  • Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, 756120.

    Article  Google Scholar 

  • Fang, S., Sun, W., Hu, H., Zhang, H., & Zheng, K. (2012). Chlorophyll content of barley (Hordeum vulgare L.) estimation from leaf SPAD, chlorophyll fluorescence and reflectance properties. Advanced Science Letters, 11, 702–705.

    Article  CAS  Google Scholar 

  • Farrag, K., Senesi, N., Nigro, F., Petrozza, P., Palma, A., Shaarawi, S., & Brunetti, G. (2012). Growth responses of crop and weed species to heavy metals in pot and field experiments. Environmental Science Pollution Research, 19, 3636–3644.

    Article  CAS  Google Scholar 

  • Forte, J., & Mutiti, S. (2017). Phytoremediation potential of Helianthus annuus and Hydrangea paniculata in copper and lead-contaminated soil. Water Air Soil Pollution, 228, 77. doi:10.1007/s11270-017-3249-0.

    Article  Google Scholar 

  • Gangwar, S., Singh, V. P., Garg, S. K., Prasad, S. M., & Maurya, J. N. (2011). Kinetin supplementation modifies chromium (VI) induced alterations in growth and ammonium assimilation in pea seedlings. Biological Trace Element Research, 144, 1327–1343.

    Article  CAS  Google Scholar 

  • Garate, A., Ramón, A. M., & Carpena, O. R. (1984). Influencia del boro sobre el manganeso y otros nutrientes en extractos de tejidos vasculares. Anales de Edafología Agrobiología, 43, 1467–1477.

    CAS  Google Scholar 

  • González, A. (2009). Aplicación del medidor portátil de clorofila en programas de mejora de trigo y cebada. Agroecología, 4, 111–116.

    Google Scholar 

  • González, A., Gil-Díaz, M., & Lobo, M. C. (2015). Response of two barley cultivars to increasing concentrations of cadmium or chromium in soil during the growing period. Biological Trace Element Research, 163, 235–224.

    Article  Google Scholar 

  • Guo, P., Baum, M., Varshney, R. K., Graner, A., Grando, S., & Ceccarelli, S. (2008). QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 163, 203–214.

    Article  CAS  Google Scholar 

  • Hao, D., Chao, M., Yin, Z., & Yu, D. (2012). Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica, 186, 919–931.

    Article  CAS  Google Scholar 

  • Hertwig, B., Streb, P., & Feierabend, J. (1992). Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiology, 100, 1547–1553.

  • Hörcsik, Z. T., Kovács, L., Láposi, R., Mészaros, I., Lakatos, G., & Garab, G. (2007). Effect of chromium on photosystem 2 in the unicellular green alga, Chlorella pyrenoidosa. Photosynthetica, 5, 65–69.

    Article  Google Scholar 

  • Hosseini, Z., & Poorakbar, L. (2013). Zinc toxicity on antioxidative response in (Zea mays L.) at two different pH. Journal of Stress Physiology & Biochemistry, 9, 66–73.

    Google Scholar 

  • Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K., & Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp). Acta Physiologiae Plantarum, 32, 979–986.

    Article  CAS  Google Scholar 

  • Juknys, R., Vitkauskaité, G., Racaitè, M., & Venclovienè, J. (2012). The impacts of heavy metals on oxidative stress and growth of spring barley. Central European Journal of Biology, 7, 299–306.

    CAS  Google Scholar 

  • Kadioglu, A., & Terzi, R. (2007). A dehydration avoidance mechanism: leaf rolling. Botanical Review, 73, 290–302.

    Article  Google Scholar 

  • Kashem, M. D., & Kawai, S. (2007). Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Science Plant Nutrition, 53, 246–251.

    Article  CAS  Google Scholar 

  • Kumar, S., Sehgal, S. K., Kumar, U., Prasad, P. V., Joshi, A. K., & Gill, B. S. (2012). Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica, 186, 265–276.

    Article  CAS  Google Scholar 

  • Lasat, M. M., Pence, N. S., Garvin, D. F., Ebbs, S. D., & Kochian, L. V. (2000). Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 51, 71–79.

    Article  CAS  Google Scholar 

  • Lee, J. H. (2013). An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnology and Bioprocess Engineering, 18, 431–439.

    Article  CAS  Google Scholar 

  • Li, X., Zhang, L., Li, Y., Ma, L., Bu, N., & Ma, C. (2012). Changes in photosynthesis, antioxidant enzymes and lipid peroxidation in soybean seedlings exposed to UV-B radiation and /or Cd. Plant and Soil, 352, 377–387.

    Article  CAS  Google Scholar 

  • Li, Z., Peng, Y., & Ma, X. (2013). Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiologiae Plantarum, 35, 213–222.

    Article  Google Scholar 

  • Lu, Y., Li, X., He, M., Zhao, X., Liu, Y., Cui, Y., Pan, Y., & Tan, H. (2010). Seedlings gowth and antioxidative enzymes activities in leaves under heavy metals stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass. Acta Physiologiae Plantarum, 32, 583–590.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, 1–56.

    Article  CAS  Google Scholar 

  • MAPA (1994). Métodos Oficiales de Análisis, vol. III. Secretaría General Técnica, Ministerio de Agricultura, Pesca y Alimentación, Madrid. Spain.

  • Mattina, M. J., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124, 375–378.

    Article  CAS  Google Scholar 

  • Martins, L. L., Mourato, M. P., Baptista, S., Reis, R., Carvalheiro, F., Almeida, A. M., Fevereiro, P., & Cuypers, A. (2014). Response to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1). Acta Physiologiae Plantarum, 36, 755–765.

    Article  CAS  Google Scholar 

  • Mench, M., Schwitzguébel, J. P., Schroeder, P., Bert, V., Gawronski, S., & Gupta, S. (2009). Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environmental Science Pollution Research, 16, 876–900.

    Article  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Science, 7, 405–410.

    Article  CAS  Google Scholar 

  • Morina, F., Jovanovic, L., Mojovic, M., Vidovic, M., Pankovic, D., & Jovanovic, S. V. (2010). Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiologia Plantarum, 140, 209–224.

    CAS  Google Scholar 

  • Naik, S., Gound, V. V., Rout, P. K., Jacobson, K., & Dalai, A. K. (2010). Characterization of Canadian biomass for alternative renewable biofuel. Renewable Energy, 35, 1624–1631.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Nadgórska-Socha, A., Kafel, A., Kandziora-Ciupa, M., Gospodarek, J., & Zawisza-Raszka, A. (2013). Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environmental Science Pollution Research, 20, 1124–1134.

    Article  Google Scholar 

  • Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology, 49, 249–279.

    Article  CAS  Google Scholar 

  • Oliveira, H. (2012). Chromium as an environmental pollutant: insights on induced plant toxicity. Journal of Botany. doi:10.1155/2012/375843.

  • Panda, S. K. (2007). Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology, 164, 1419–1428.

    Article  CAS  Google Scholar 

  • Panda, S. K., Chaudhury, I., & Khan, M. H. (2003). Heavy metal induced lipid peroxidation and affect antioxidants in wheat leaves. Biologia Plantarum, 46, 289–294.

    Article  CAS  Google Scholar 

  • Panda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian Journal Plant Physiolology, 17, 95–102.

    Article  CAS  Google Scholar 

  • Pang, J., Chan, G. S. Y., Zhang, L. J., & Wong, M. H. (2003). Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes. Chemosphere, 52, 1559–1570.

    Article  CAS  Google Scholar 

  • Pradas-del-Real, A. E., García-Gonzalo, P., Alarcón, R., González-Rodríguez, A., Lobo, M. C., & Pérez-Sanz, A. (2013). Effect of genotype, Cr(III) and Cr(VI) on plant growth and micronutrient status in Silene vulgaris (Moench). Spanish Journal of Agricultural Research, 11, 685–694.

    Article  Google Scholar 

  • Pradas-del-Real, A. E., García-Gonzalo, P., Gil-Díaz, M., González-Rodríguez, A., Lobo, M. C., & Pérez-Sanz, A. (2015). Eco-physiological response of S. vulgaris to Cr(VI): influence of concentration and genotype. International Journal of Phytoremediation, 18, 567–574.

    Article  Google Scholar 

  • Raines, C. A. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiology, 155, 36–42.

    Article  CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? and what makes them so interesting? Plant Science, 180, 169–181.

    Article  CAS  Google Scholar 

  • Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology, 17, 208–2012.

    Article  CAS  Google Scholar 

  • Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30, 105–111.

    Article  Google Scholar 

  • Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero-Puertas, M. C., & del Río, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115–2126.

    Article  CAS  Google Scholar 

  • Santos, E. S., Abreu, M. M., Nabais, C., & Saraiva, J. A. (2009). Trace elements and activity of antioxidative enzymes in Cistus ladanifer L. growing on an abandoned mine area. Ecotoxicology, 18, 860–868.

    Article  CAS  Google Scholar 

  • Shahandeh, H., & Hossner, L. R. (2000). Plant screening for chromium phytoremediation. International Journal of Phytoremediation, 2, 3–51.

    Google Scholar 

  • Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26, 31–43.

    Article  CAS  Google Scholar 

  • Todeschini, V., Lingua, G., D’Agostino, G., Carniato, F., Roccotiello, E., & Berta, G. (2011). Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environmental and Experimental Botany, 71, 50–56.

    Article  CAS  Google Scholar 

  • Tsonev, T., & Lidon, F. J. C. (2012). Zinc in plants—an overview. Emirates Journal of Food and Agriculture, 24, 322–333.

    Google Scholar 

  • Vázquez, M. D., Poschenrieder, C., & Barceló, J. (1987). Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.) Annals of Botany, 59, 427–438.

    Article  Google Scholar 

  • Vernay, P., Gauthier-Moussard, C., & Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68, 1563–1575.

    Article  CAS  Google Scholar 

  • Wang, F., Chen, F., Cai, Y., Zhang, G., & Wu, F. (2011). Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biological Trace Element Research, 144, 1275–1288.

    Article  CAS  Google Scholar 

  • Wu, F. B., & Zhang, G. P. (2002). Alleviation of Cd-toxicity by application of Zn and ascorbic acid in barley. Journal Plant Nutrition, 25, 2745–2761.

    Article  CAS  Google Scholar 

  • Wu, F., Zhang, G., & Dominy, P. (2003). Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 50, 67–78.

    Article  CAS  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Kozak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206, 293–299.

    Article  CAS  Google Scholar 

  • Zayed, A. M., & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and Soil, 249, 139–156.

    Article  CAS  Google Scholar 

  • Zeng, F. R., Mao, Y., Cheng, W. D., Wu, F. B., & Zhang, G. P. (2008). Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environmental Pollution, 153, 309–314.

    Article  CAS  Google Scholar 

  • Zeng, F., Ali, S., Qiu, B., Wu, F., & Zhang, Z. (2010a). Effects of chromium stress on the subcellular distribution and chemical form of Ca, Mg, Fe, and Zn in two rice genotypes. Journal of Plant Nutrition and Soil Science, 173, 135–148.

    Article  CAS  Google Scholar 

  • Zeng, F., Qiu, B., Ali, S., & Zhang, G. (2010b). Genotypic differences in nutrient uptake and accumulation in rice under chromium stress. Journal of Plant Nutrition, 33, 518–528.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Project FP16-RESIDUA (IMIDRA) and the EIADES Research Group, www.eiades.org. The authors would like to thank the National Electronic Microscopy Center for electron microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agueda González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, A., Gil-Díaz, M.M., Pinilla, P. et al. Impact of Cr and Zn on Growth, Biochemical and Physiological Parameters, and Metal Accumulation by Wheat and Barley Plants. Water Air Soil Pollut 228, 419 (2017). https://doi.org/10.1007/s11270-017-3507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3507-1

Keywords

Navigation