Skip to main content

Advertisement

Log in

Accumulation of Cadmium and Antioxidant and Hormonal Responses in the Indian Major Carp Cirrhinus mrigala During Acute and Sublethal Exposure

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Acute (24 h) and sublethal (35 days) effects of cadmium chloride (CdCl2) were examined in Cirrhinus mrigala using various endpoints (accumulation pattern, thyroid hormones (THs), and antioxidants). The mean concentrations of CdCl2 for 24 and 96 h were found to be 35.974 and 22.387 mg L−l, respectively. LC50 concentration of CdCl2 for 24 h (35.97 mg L−l) was used for the acute study. For the sublethal studies, fish were exposed to 3.59 mg L−1 (Treatment I) and 7.19 mg L−1 (Treatment II) corresponding to 1/10th and 1/5th of 24 h LC50 of the CdCl2. During acute exposure, higher accumulation of CdCl2 was noticed in the gill, liver, and kidney of C. mrigala, which is found in the order gill > liver > kidney tissues. Similarly, in sublethal treatments (Treatment I and II), a concentration and time-dependent increase of CdCl2 accumulation was noticed in the order of gill > liver > kidney. GSH, GST, and GPx activities were found to be relatively lower from the treated groups in both acute and sublethal treatments. However, LPO activity was significantly increased in CdCl2-treated fish C. mrigala. Further, plasma T3 reduction was more pronounced than T4 in acute study. During sublethal treatments, both T4 and T3 levels showed a continuous decrease as the exposure period extended. All the values in this study were statically significant (P < 0.01 and P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, I., Oliveira, M., & Pacheco, M. (2005). Anguilla anguilla L. oxidative stress biomarkers responses to copper exposure with or without β-naphthoflavone pre-exposure. Chemosphere, 61, 267–275. doi:10.1016/j.chemosphere.2005.01.069.

    Article  CAS  Google Scholar 

  • Ajmal, M., Khan, M. A., & Nomani, A. A. (1985). Distribution of heavy metals in plants and fish of the Yamuna River. Environmental Monitoring and Assessment, 5, 361. doi:10.1007/BF00399464.

    Article  CAS  Google Scholar 

  • Al-Asgah, N. A., Abdel-Warith, A. W. A., Younis, E. S. M., & Allam, H. Y. (2015). Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi Journal of Biological Sciences, 22, 543–550. doi:10.1016/j.sjbs.2015.01.002.

    Article  CAS  Google Scholar 

  • Annune, P. A., & Iyaniwura, T. T. (1994). Accumulations of two trace metals in tissues of freshwater fishes, Oreochromis niloticus and Clarias gariepinus. Journal of Aquatic Food Product Technology, 23, 5–18. doi:10.1300/J030v02n03_02.

    Article  Google Scholar 

  • APHA (American Public Health Association). (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Asagba, S. O., Eriyamremu, G. E., & Igberaese, M. E. (2008). Bioaccumulation of cadmium and its biochemical effect on selected tissues of the cat fish (Clarias gariepinus). Fish Physiology and Biochemistry, 34, 61–69. doi:10.1007/s10695-007-9147-4.

    Article  CAS  Google Scholar 

  • Atli, G., Alptekin, I. T., & Ukel, S. (2006). Response of catalase activity to Ag+,Cd2+, Cr6+,Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology, 143, 218–224. doi:10.1016/j.cbpc.2006.02.003.

    Article  Google Scholar 

  • Atli, G., & Canli, M. (2010). Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicology and Environmental Safety, 73(8), 1884–1889. doi:10.1016/j.ecoenv.2010.09.005.

    Article  CAS  Google Scholar 

  • Bagchi, D., Joshi, S. S., & Bagchi, M. (2000). Cadmium and chromium-induced oxidative stress, DNA damage, and apoptotic cell death in cultured human chronic myelogenous leukemic K562 cells, promyelocytic leukemic HL-60 cells, and normal human peripheral blood mononuclear cells. Journal of Biochemistry and Molecular Toxicology, 14, 33–41. doi:10.1002/(SICI)1099-0461(2000)14,1<33,,AID-JBT5>3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  • Bainy, A. C. D., Arisi, A. C. M., Azzalis, L. A., Simizu, K., Barros, S. B. M., Videla, L. A., & Junqueira, V. B. C. (1993). Differential effects of short-term lindane administration on parameters related to oxidative stress in rat liver and erythrocytes. Journal of Biochemistry and Molecular Toxicology, 8(4), 187–194. doi:10.1002/jbt.2570080404.

    Article  CAS  Google Scholar 

  • Boas, M., Feldt-Rasmussen, U., Skakkebaek, N. E., & Main, K. M. (2006). Environmental chemicals and thyroid function. European Journal of Endocrinology, 154, 599–611. doi:10.1530/eje.1.02128.

    Article  CAS  Google Scholar 

  • Bowen, L., Werner, I., & Johnson, M. L. (2006). Physiological and behavioral effects of zinc and temperature on coho salmon (Oncorhynchus kisutch). Hydrobiologia, 559, 161–168. doi:10.1007/s10750-005-1095-3.

    Article  CAS  Google Scholar 

  • Cao, L., Huang, W., Liu, J., Yin, X., & Dou, S. (2010). Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 151, 386–392. doi:10.1016/j.cbpc.2010.01.004.

    Google Scholar 

  • Cazan, A. M., & Klerks, P. L. (2015). Effects from a short-term exposure to copper or cadmium in gravid females of the livebearer fish (Gambusia affinis). Ecotoxicology and Environmental Safety, 118, 199–203. doi:10.1016/j.ecoenv.2015.04.039.

    Article  CAS  Google Scholar 

  • Cinier, C. D., Petit Ramel, M., Faure, R., & Garin, D. (1997). Cadmium bioaccumulation in carp (Cyprinus carpio) tissues during long-term high exposure analysis by inductively coupled plasma-mass spectrometry. Ecotoxicology and Environmental Safety, 38(2), 137–143. doi:10.1006/eesa.1997.1569.

    Article  Google Scholar 

  • Cirillo, T., Amodio Cocchieri, R., Fasano, E., Lucisano, A., Tafuri, S., Ferrante, M. C., Carpenè, E., Andreani, G., & Isani, G. (2012). Cadmium accumulation and antioxidant responses in Sparus aurata exposed to waterborne cadmium. Archives of Environmental Contamination and Toxicology, 62(1), 118–126. doi:10.1007/s00244-011-9676-9.

    Article  CAS  Google Scholar 

  • Clemow, Y. H., & Wilkie, M. P. (2015). Effects of Pb plus Cd mixtures on toxicity, and internal electrolyte and osmotic balance in the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 161, 176–188. doi:10.1016/j.aquatox.2015.01.032.

    Article  Google Scholar 

  • Coimbra, A. M., Reis-Henriques, M. A., & Darras, V. M. (2005). Circulating thyroid hormone levels and iodothyronine deiodinase activities in Nile tilapia (Oreochromis niloticus) following dietary exposure to endosulfan and aroclor 1254. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 141, 8–14. doi:10.1016/j.cca.2005.04.006.

    Article  Google Scholar 

  • COMAPS. (1990–1999). Decadal Monitoring Profile, West Bengal Coast.

  • Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., Opdenakker, K., Ravindran Nair, A., Munters, E., Artois, T. J., Nawrot, T., Vangronsveld, J., & Smeets, K. (2010). Cadmium stress, an oxidative challenge. Biometals, 23, 927–940. doi:10.1007/s10534-010-9329-x.

    Article  CAS  Google Scholar 

  • De Conto Cinier, C., Petit-Rame, M., & Faure, R. (1998). Cadmium accumulation and metallothionein biosynthesis in Cyprinus carpio tissues. Bulletin of Environmental Contamination and Toxicology, 61, 793–799.

    Article  Google Scholar 

  • De Smet, H., De Wachter, B., Lobinski, R., & Blust, R. (2001). Dynamics of (cd, Zn)- metallothioneins in gills, liver and kidney of common carp Cyprinus carpio during cadmium exposure. Aquatic Toxicology, 52, 269–281.

    Article  Google Scholar 

  • Drastichova, J., Svobodova, Z., Luskova, V., & Máchová, J. (2004). Effect of cadmium on hematological indices of common carp Cyprinus carpio (L.) Bulletin of Environmental Contamination and Toxicology, 72, 725–732.

    CAS  Google Scholar 

  • Duan, Z., Xing, Y., Feng, Z., Zhang, H., Li, C., Gong, Z., Wang, L., & Sun, H. (2017). Hepatotoxicity of benzotriazole and its effect on the cadmium induced toxicity in zebrafish Danio rerio. Environmental Pollution, 224, 706–713. doi:10.1016/j.envpol.2017.02.055.

  • Elia, A. C., Dorr, A. J. M., & Mantilacci, L. (2000). Effects of mercury on glutathione and glutathione-dependent enzymes in catfish (Ictalurus melas R.) In B. Markert & K. Friese (Eds.), Trace elements—their distribution and effects in the environment, trace metals in the environment, Vol. 4 (pp. 411–421). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.

  • El-Moselhy, K. M. (2001). Toxicity of cadmium to the marine fish Mugil seheli and its accumulation in different tissues. Egyptian Academic Society for Environmental Development, 2(1), 17–28.

    Google Scholar 

  • Evans, D. H. (1997). The fish gill, site of action and model for toxic effects of environmental pollutions. Environmental Health Perspectives, 71, 74–58.

    Google Scholar 

  • Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill, dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85, 97–177. doi:10.1152/physrev.00050.2003.

    Article  CAS  Google Scholar 

  • Fatima, M., Usmani, N., Firdaus, F., Zafeer, M. F., Ahmad, S., Akhtar, K., Dawar Husain, S. M., Ahmad, M. H., Anis, E., & Mobarak Hossain, M. (2015). In vivo induction of antioxidant response and oxidative stress associated with genotoxicity and histopathological alteration in two commercial fish species due to heavy metals exposure in northern India (Kali) river. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 176-177, 17–30. doi:10.1016/j.cbpc.2015.07.004.

    CAS  Google Scholar 

  • Finney, D. J. (1978). Statistical methods in biological assay (3rd ed.). London: Charles Griffin.

    Google Scholar 

  • Glynn, A. W. (2001). The influence of zinc on apical uptake of cadmium in the gill and cadmium influx to the circulator y system in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 128, 165–172. doi:10.1016/S1532-0456(00)00188-5.

    Article  Google Scholar 

  • Glynn, A. W., Haux, C., & Hogstrand, C. (1992). Chronic toxicity and metabolism of cadmium and zinc in juvenile minnows Phoxinus phoxinus exposed to a cadmium and zinc mixture. Canadian Journal of Fisheries and Aquatic Sciences, 49, 82–87.

    Article  Google Scholar 

  • Gomes, M. J., Martinez, P. F., Campos, D. H. S., Urbano Pagan, L., Bonomo, C., Lima, A. R. R., Damatto, L. R., Cezar, M. D. M., Damatto, F. C., Rosa, C. M., Garcia, C. M., Reyes, D. R. A., Fernandes, A. A. H., Fernandes, D. C., Laurindo, F. R., Okoshi, K., & Okoshi, M. P. (2016). Beneficial effects of physical exercise on functional capacity and skeletal muscle oxidative stress in rats with aortic stenosis-induced heart failure. Oxidative Medicine and Cellular Longevity, 2016, 1–12. doi:10.1155/2016/8695716.

    Article  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione-S-transferases, the first enzymatic step in mercapturic acid formation. Journal of Biological Chememistry, 249, 7130–7139 http://www.jbc.org/content/249/22/7130.

    CAS  Google Scholar 

  • Haliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine (3rd ed.). Oxford: Clarendon Press.

    Google Scholar 

  • Ikediobi, C. O., Badisa, V. L., Ayuk-Takem, L. T., Latinwo, L. M., & West, J. (2004). Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells. International Journal of Molecular Medicine, 14, 87–92. doi:10.3892/ijmm.14.1.87.

    CAS  Google Scholar 

  • Jindal, R., & Verma, S. S. (2015). In vivo genotoxicity and cytotoxicity assessment of cadmium chloride in peripheral erythrocytes of Labeo rohita (Hamilton). Ecotoxicology and Environmental Safety, 118, 1–10.

    Article  CAS  Google Scholar 

  • Kargin, F. (1998). Metal concentrations in tissues of the freshwater fish Capoeta barroisi from the Sayhan River (Turkey). Bulletin of Environmental Contamination and Toxicology, 60, 822–828.

    Article  CAS  Google Scholar 

  • Kim, S. G., Jee, J. H., & Kang, J. C. (2004). Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after sub-chronic cadmium exposure. Environmental Pollution, 127, 117–123. doi:10.1016/S0269-7491(03)00254-9.

    Article  CAS  Google Scholar 

  • Kohen, R., & Nyska, A. (2002). Oxidation of biological systems, oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicology and Pathology, 30, 620–650. doi:10.1080/0192623029016672 4.

    Article  CAS  Google Scholar 

  • Kraal, M. H., Kraak, M. H. S., Degroot, C. J., & Davids, C. (1995). Uptake and tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio). Ecotoxicology and Environmental Safety, 31(2), 179–183. doi:10.1006/eesa.1995.1060.

    Article  CAS  Google Scholar 

  • Li, X., Yin, P., & Zhao, L. (2017). Effects of individual and combined toxicity of bisphenol A, dibutyl phthalate and cadmium on oxidative stress and genotoxicity in HepG 2 cells. Food and Chemical Toxicology, 105, 73–81. doi:10.1016/j.fct.2017.03.054.

    Article  CAS  Google Scholar 

  • Liu, S. Y., & Wang, F. (1991). Damage to hepatic thyroxine 5′-deiodination induced by pathogenic factors of Keshan disease and the preventive effects of selenium and vitamin E. Biomedical and Environmental Sciences, 4, 359–365.

    CAS  Google Scholar 

  • Livingstone, D. R., Martinez, P., & Michel, G. (1990). Oxyradical production as a pollutant-mediated mechanism of toxicity in the common mussel, Mytilus edulis L., and other mollusks. Functional Ecology, 4, 415–424. doi:10.2307/2389604.

    Article  Google Scholar 

  • Lizardo-Daudt, H. M., Bains, O. S., Singh, C. R., & Kennedy, C. J. (2008). Cadmium chloride induced disruption of testicular steroidogenesis in rainbow trout, Oncorhynchus mykiss. Archives of Environmental Contamination and Toxicology, 55, 103–110. doi:10.1007/s00244-007-9081-6.

    Article  CAS  Google Scholar 

  • Mahrous, K. F., Hassan, A. M., Radwan, H. A., & Mahmoud, M. A. (2015). Inhibition of cadmium-induced genotoxicity and histopathological changes in Nile tilapia fish by Egyptian and Tunisian montmorillonite clay. Ecotoxicology and Environmental Safety, 119, 140–147. doi:10.1016/j.ecoenv.2015.04.054.

    Article  CAS  Google Scholar 

  • Mesquita, S. R., Ergen-Fikirdeşici, S., Rodrigues, A. P., Oliva-Teles, M. T., Delerue-Matos, C., & Guimarães, L. (2015). N-acetyl-d-glucosaminidase activity in feral Carcinus maenas exposed to cadmium. Aquatic Toxicology, 159, 225–232. doi:10.1016/j.aquatox.2014.12.008.

    Article  CAS  Google Scholar 

  • Nordberg, G., Jina, T., Wu, X., Lu, J., Chen, L., Liang, Y., Lei, L., Hong, F., Bergdahl, I. A., & Nordberg, M. (2012). Kidney dysfunction and cadmium exposure-factors influencing dose–response relationships. Journal of Trace Elements in Medicine and Biology, 26, 197–200. doi:10.1016/j.jtemb.2012.03.007.

    Article  CAS  Google Scholar 

  • Nunes, B., Gaio, A. R., Carvalho, F., & Guilhermino, L. (2008). Behaviour and biomarkers of oxidative stress in Gambusia holbrooki after acute exposure to widely used pharmaceuticals and a detergent. Ecotoxicology and Environmental Safety, 71, 341–354. doi:10.1016/j.ecoenv.2007.12.006.

    Article  CAS  Google Scholar 

  • Olmedo, P., Pla, A., Hernández, A. F., Barbier, F., Ayouni, L., & Gil, F. (2013). Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples, risk assessment for the consumers. Environment International, 59, 63–72. doi:10.1016/j.envint.2013.05.005.

    Article  CAS  Google Scholar 

  • Olsson, P. E., Larsson, A., Maage, S., Haux, C., Bonham, K., Zafarullah, M., & Gedamu, L. (1989). Induction of metallothionein synthesis in rainbow trout, Salmo gairdneri, during long-term exposure to water borne cadmium. Fish Physiology and Biochemistry, 6, 221–229. doi:10.1007/BF01875025.

    Article  CAS  Google Scholar 

  • Oruc, E. O., & Uner, N. (2000). Combined effects of 2,4-D and azinphos methyl on antioxidant enzymes and lipid peroxidation in liver of Oreochromis niloticus. Comparative Biochemistry and Physiology - Part C: Toxicology and Pharmacology, 127, 291–296. doi:10.1016/S0742-8413(00)00159-6.

    CAS  Google Scholar 

  • Pandey, S., Parvez, S., & Ansari, R. A. (2008). Effects of exposure to multiple trace metals on biochemical, histological an ultrastructural features of gills of a freshwater fish, Channa punctatus Bloch. Chemico-Biological Interactions, 174, 183–192. doi:10.1016/j.cbi.2008.05.014.

    Article  CAS  Google Scholar 

  • Perry, S. F. (1997). The chloride cell, structure and function in the gills of freshwater fishes. Annual Review of Physiology, 59, 325–347. doi:10.1146/annurev.physiol.59.1.325.

    Article  CAS  Google Scholar 

  • Qu, R., Wang, X., Wang, Z., Wei, Z., & Wang, L. (2014). Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. Journal of Hazardous Materials, 275, 89–98. doi:10.1016/j.jhazmat.2014.04.051.

    Article  CAS  Google Scholar 

  • Rana, S., Singh, R., & Verma, S. (1995). Mercury-induced lipid peroxidation in the liver, kidney, brain and gills of a fresh water fish, Channa punctatus. Japan Journal of Ichthyology, 42, 255–259.

    Google Scholar 

  • Rie, M. T., Lendas, K. A., & Callard, I. P. (2001). Cadmium, tissue distribution and binding protein induction in the painted turtle, Chrysemys picta. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 130, 41–51. doi:10.1016/S1532-0456(01)00219-8.

    CAS  Google Scholar 

  • Romeo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., & Girard, J. P. (2000). Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology, 48, 185–194. doi:10.1016/S0166-445X(99)00039-9.

    Article  CAS  Google Scholar 

  • Rotruck, J. T., Pope, A. L., & Ganther, H. E. (1973). Selenium biochemical roles as a component of glutathione peroxidase. Science, 179, 588–590. doi:10.1126/science.179.4073.588.

    Article  CAS  Google Scholar 

  • Sabatini, S. E., Brena, B. M., Luquet, C. M., San Julián, M., Pirez, M., & Carmen Ríos de Molina, M. D. (2011). Microcystin accumulation and antioxidant responses in the freshwater clam Diplodon chilensis patagonicus upon subchronic exposure to toxic Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 74, 1188–1194. doi:10.1016/j.ecoenv.2011.03.012.

    Article  CAS  Google Scholar 

  • Sathya, V., Ramesh, M., Poopal, R. K., & Dinesh, B. (2012). Acute and sublethal effects in an Indian major carp Cirrhinus mrigala exposed to silver nitrate, gill Na+/K+-ATPase, plasma electrolytes and biochemical alterations. Fish Shellfish Immunology, 32, 862–868. doi:10.1016/j.fsi.2012.02.014.

    Article  CAS  Google Scholar 

  • Schall, R. F., Fraser, A. S., Hansen, H. W., Kern, C. W., & Tenoso, H. J. (1978). Sensitive manual enzyme immunoassay for thyroxine. Clinical Chemistry, 24(10), 1801.

    CAS  Google Scholar 

  • Shi, H. S., Sui, Y. X., Wang, X. R., Luo, Y., & Ji, L. (2005). Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 140, 115–121. doi:10.1016/j.cca.2005.01.009.

    Google Scholar 

  • Sies, H. (1999). Glutathione and its role in cellular functions. Free Radical Biology and Medicine, 27, 916–921. doi:10.1016/S0891-5849(99)00177-X.

    Article  CAS  Google Scholar 

  • Sprague, J. B. (1971). Measurement of pollutant toxicity to fish III, sublethal effects and ‘safe’ concentrations. Water Research, 5, 245–266. doi:10.1016/0043-1354(71)90171-0.

    Article  CAS  Google Scholar 

  • Subhash Peter, M. C. (2011). The role of thyroid hormone in stress response of fish. General Comparative Endocrinology, 172, 198–210. doi:10.1016/j.ygcen.2011.02.023.

    Article  Google Scholar 

  • Thophon, S., Kruatrachue, M., & Upatham, E. S. (2003). Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environmental Pollution, 121, 307–320. doi:10.1016/S0269-7491(02)00270-1.

    Article  CAS  Google Scholar 

  • Timbrell, J. A. (1991). Principles of biochemical toxicology (2nd ed.). London: Taylor and Francis.

    Google Scholar 

  • Topping, G. (1973). Heavy metals in fish from Scott fish water. Aquculture, 1, 373–377.

    Article  Google Scholar 

  • Waisberg, M., Joseph, P., Hale, B., & Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192, 95–117. doi:10.1016/S0300-483X(03)00305-6.

    Article  CAS  Google Scholar 

  • Wang, W. X., & Rainbow, P. S. (2008). Comparative approaches to understand metal bioaccumulation in aquatic animals. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 148, 315–323.

    Google Scholar 

  • WHO. (1992). Cadmium environmental aspects environmental health criteria 135. Geneva: World Health Organisation, IPCS.

    Google Scholar 

  • Wimmer, U., Wang, Y., Georgiev, O., & Schaffner, W. (2005). Two major branches of anti-cadmium defense in the mouse, MTF-1/metallothionein and glutathione. Nucleic Acids Research, 33(18), 5715–5727. doi:10.1093/nar/gki881.

    Article  CAS  Google Scholar 

  • Wofford, H. W., & Thomas, P. (1988). Effects of xenobiotics on peroxidation of hepatic microsomal lipids from striped mullet and Atlantic croaker. Marine Environmental Research, 24, 285–289. doi:10.1016/0141-1136(88)90322-4.

    Article  CAS  Google Scholar 

  • Woo, S., Yum, S., & Park, H. S. (2009). Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 149, 289–299. doi:10.1016/j.cbpc.2008.08.002.

    Google Scholar 

  • Wood, C. M. (2001). Toxic responses of the gill. In D. Schlenk & W. H. Benson (Eds.), Target organ toxicity in marine and freshwater teleosts (pp. 1–87). London: Taylor and Francis.

    Google Scholar 

  • Wu, B., Liu, Z., Xu, Y., Li, D., & Li, M. (2012). Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta). Ecotoxicology and Environmental Safety, 81, 122–126. doi:10.1016/j.ecoenv.2012.05.003.

    Article  CAS  Google Scholar 

  • Xu, Z., & Shijun, B. (2007). Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicology and Environmental Safety, 67, 89–94.

    Article  CAS  Google Scholar 

  • Xu, M.-Y., Wang, P., Sun, Y.-J., & Wu, Y.-J. (2017). Metabolomic analysis for combined hepatotoxicity of chlorpyrifos and cadmium in rats. Toxicology. doi:10.1016/j.tox.2017.04.008.

  • Yagi, K. (1978). Lipid peroxides and human diseases. Chemistry and Physics of Lipids, 45, 337–351.

    Article  Google Scholar 

  • Yılmaz, M., Gul, A., & Karaköse, E. (2004). Investigation of acute toxicity and the effect of cadmium chloride (CdCl2·H2O) metal salt on behavior of the guppy (Poecilia reticulata). Chemosphere, 56, 375–380. doi:10.1016/j.chemosphere.2003.11.067.

    Article  Google Scholar 

  • Yu, K. O., Narayanan, L., Mattie, D. R., Godfrey, R. J., Todd, P. N., Sterner, T. R., Mahle, D. A., Lumpkin, M. H., & Fisher, J. W. (2002). The pharmacokinetics of perchlorate and its effect on the hypothalamus-pituitary-thyroid axis in the male rat. Toxicology and Applied Pharmacology, 182, 148–159. doi:10.1006/taap.2002.9432.

    Article  CAS  Google Scholar 

  • Zaccaroni, A., Gamberoni, M., & Mandrioli, L. (2009). Thyroid hormones as a potential early biomarker of exposure to 4-nonylphenol in adult male shubunkins (Carassius auratus). Science of the Total Environment, 407, 3301–3306. doi:10.1016/j.scitotenv.2009.01.036.

    Article  CAS  Google Scholar 

  • Zhang, J. F., Liu, H., Sun, Y. Y., Wang, X. R., Wu, J. C., & Xue, Y. Q. (2005). Responses of the antioxidant defenses of the goldfish Carassius auratus, exposed to 2,4-dichlorophenol. Environmental Toxicology and Pharmacology, 19, 185–190. doi:10.1016/j.etap.2004.07.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathan Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malarvizhi, A., Saravanan, M., Poopal, R.K. et al. Accumulation of Cadmium and Antioxidant and Hormonal Responses in the Indian Major Carp Cirrhinus mrigala During Acute and Sublethal Exposure. Water Air Soil Pollut 228, 310 (2017). https://doi.org/10.1007/s11270-017-3492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3492-4

Keywords

Navigation