Skip to main content
Log in

Pine Bark Amendment to Promote Sustainability in Cu-Polluted Acid Soils: Effects on Lolium perenne Growth and Cu Uptake

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The establishment of a complementary grass cover on vineyard soils can promote sustainability of the affected environment. In this work, we used an acid vineyard soil with total Cu concentration 188 mg kg−1 to study the influence of pine bark amendment on Lolium perenne growth and Cu uptake. The results indicate that the pine bark amendment did not cause a significant increase in the mass of the shoots of Lolium perenne, but favored the root biomass: 0.034 g for control and 0.061 g for soil samples amended with 48 g kg−1 of pine bark. Moreover, the pine bark amendment decreased Cu concentration in both, shoots (50 mg kg−1 for control soil and 29 mg kg−1 for soil amended with 48 g kg−1 pine bark) and roots (250 mg kg−1 for control soil and 64 mg kg−1 for soil amended with 48 g kg−1 pine bark). The main factor responsible for these results was a significant decrease of the most mobile fractions of Cu in the soil. Those fractions were extracted using ammonium acetate, ammonium chloride, sodium salt of ethylene-diamine-tetraacetic acid (EDTA-Na), and diethylene-triamine-pentaacetic acid (DTPA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahumada, I., Gudenschwager, O., Carrasco, A. M., Castillo, G., Ascar, L., & Richter, P. (2009). Copper and zinc bioavailability to ryegrass (Lolium perenne L.) and subterranean clover (Trifolium subterraneum L.) grown in biosolid treated Chilean soils. Journal of Environmental Management, 90, 2665–2671.

    Article  CAS  Google Scholar 

  • Ambrosini, V. G., Rosa, D. J., Corredor Prado, J. P., Borghezan, M., Bastos de Melo, J. W., Fonsêca de Sousa Soares, C. R., Comin, J. J., Guimarães Simão, D., & Brunetto, G. (2015). Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.) Plant Physiology and Biochemistry, 96, 270–280.

    Article  CAS  Google Scholar 

  • Aliloo, A. A., Shahabivand, S., Farjam, L., & Heravi, S. (2012). Allelopathic effects of pine needle extracts on germination and seedling growth of ryegrass and Kentucky bluegrass. Advances in Environmental Biology, 6, 2513–2518.

    Google Scholar 

  • Antoniadis, V., Damalidis, K., & Dimirkou, A. (2012). Availability of Cu and Zn in an acid sludge-amended soil as affected by zeolite application and liming. Journal of Soils and Sediments, 12, 396–401.

    Article  CAS  Google Scholar 

  • Arias, M., López, E., Fernández, D., & Soto, B. (2004). Copper distribution and dynamics in acid vineyard soils treated with copper-based fungicides. Soil Science, 169, 796–805.

    Article  CAS  Google Scholar 

  • Arienzo, M., Adamo, P., & Cozzolino, V. (2004). The potential of Lolium perenne for revegetation of contaminated soils from a metallurgical site. The Science of the Total Environment, 319, 13–25.

    Article  CAS  Google Scholar 

  • Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J. Y., Asseline, J., Leprun, J. C., Arshad, M. A., & Roose, E. (2009). Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil and Tillage Research, 106, 124–136.

    Article  Google Scholar 

  • Brun, L. A., Maillet, J., Hinsinger, P., & Pépin, M. (2001). Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environmental Pollution, 111, 293–302.

    Article  CAS  Google Scholar 

  • Brunetto, G., Bastos de Melo, G. W., Terzano, R., Del Buono, D., Astolfi, S., Tomasi, N., Pii, Y., Mimmo, T., & Cesco, S. (2016). Copper accumulation in vineyard soils: rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 162, 293–307.

    Article  CAS  Google Scholar 

  • Bulut, Y., & Demir, M. (2007). The allelopathic effects of scots pine (Pinus sylvestris L.) leaf extracts on turf grass seed germination and seedling growth. Asian Journal of Chemistry, 19, 3169–3177.

    CAS  Google Scholar 

  • Coelho, G. F., Gonçalves Jr., A. C., Nóvoa-Muñoz, J. C., Fernández-Calviño, D., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., & Núñez-Delgado, A. (2016). Competitive and non-competitive cadmium, copper and lead sorption/desorption on wheat straw affecting sustainability in vineyards. Journal of Cleaner Production, 139, 1496–1503.

    Article  CAS  Google Scholar 

  • Cutillas-Barreiro, L., Ansias-Manso, L., Fernández-Calviño, D., Arias-Estévez, M., Nóvoa-Muñoz, J. C., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., & Núñez-Delgado, A. (2014). Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: batch-type and stirred flow chamber experiments. Journal of Environmental Management, 144, 258–264.

    Article  CAS  Google Scholar 

  • Davis, R. D., & Beckett, P. H. T. (1978). Upper critical levels of toxic elements in plants. II. Critical levels of copper in young barley, wheat, rape, lettuce and ryegrass, and of nickel and zinc in young barley and ryegrass. New Phytologist, 80, 23–32.

    Article  CAS  Google Scholar 

  • Deluisa, A., Giandon, P., Aichner, M., Bortolami, P., Bruna, L., Lupetti, A., Nardelli, F., & Stringari, G. (1996). Copper pollution in Italian vineyard soils. Communications in Soil Science and Plant Analysis, 27, 1537–1548.

    Article  CAS  Google Scholar 

  • Fan, J., He, Z., Ma, L. Q., Nogueira, T. A. R., Wang, Y., Liang, Z., & Stoffella, P. J. (2012). Calcium water treatment residue reduces copper phytotoxicity in contaminated sandy soils. Journal of Hazardous Materials, 199-200, 375–382.

    Article  CAS  Google Scholar 

  • Fernández-Calviño, D., Nóvoa-Muñoz, J. C., Díaz-Raviña, M., & Arias-Estévez, M. (2009). Copper accumulation and fractionation in vineyard soils from temperate humid zone (NW Iberian Peninsula). Geoderma, 153, 119–129.

    Article  Google Scholar 

  • Fernández-Calviño, D., Garrido-Rodríguez, B., Arias-Estévez, M., Díaz-Raviña, M., Álvarez-Rodríguez, E., Fernández-Sanjurjo, M. J., & Nuñez-Delgado, A. (2015). Effect of crushed mussel shell addition on bacterial growth in acid polluted soils. Applied Soil Ecology, 85, 65–68.

    Article  Google Scholar 

  • Fernández-Calviño, D., Cutillas-Barreiro, L., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., Álvarez-Rodriguez, E., Nóvoa-Muñoz, J. C., & Arias-Estévez, M. (2017). Cu immobilization and Lolium perenne development in an acid vineyard soil amended with crushed mussel shell. Land Degradation and Development, 28, 762–772.

    Article  Google Scholar 

  • Flores-Vélez, L. M., Ducaroir, J., Jaunet, A. M., & Robert, M. (1996). Study of the distribution of copper in an acid sandy vineyard soil by three different methods. European Journal of Soil Science, 47, 523–532.

    Article  Google Scholar 

  • Girotto, E., Ceretta, C. A., Rossato, L. V., Farias, J. G., Brunetto, G., Miotto, A., Tiecher, T. L., de Conti, L., Lourenzi, C. R., Schmatz, R., Giachini, A., & Nicoloso, F. T. (2016). Biochemical changes in black oat (Avena strigosa schreb) cultivated in vineyard soils contaminated with copper. Plant Physiology and Biochemistry, 103, 199–207.

    Article  CAS  Google Scholar 

  • Gómez-Armesto, A., Carballeira-Díaz, J., Pérez-Rodriguez, P., Fernández-Calviño, D., Arias-Estévez, M., Nóvoa-Muñoz, J. C., Alvarez-Rodriguez, E., Fernández-Sanjurjo, M. J., & Núñez-Delgado, A. (2015). Copper content and distribution in vineyard soils from Betanzos (A Coruña, Spain). Spanish Journal Of Soil Science, 5, 60–71.

    Google Scholar 

  • Gray, C. W., Haloren, R. G., Roberts, A. H., & Condon, L. M. (1999). Cadmium phytoavailability in New Zealand soils. Australian Journal of Soil Research, 37, 464–477.

    Article  Google Scholar 

  • Gundogdu, A., Ozdes, D., Duran, C., & Bulut, V. N. (2009). Biosorption of Pb(II) ions from aqueous solution by pine bark (Pinus brutia Ten.) Chemical Engineering Journal, 153, 62–69.

    Article  CAS  Google Scholar 

  • Gupta, S. K., & Chen, K. Y. (1975). Partitioning of trace elements in selective fractions of nearshore sediments. Environmental Letters, 10, 129–158.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press, Taylor and Francis Group.

    Google Scholar 

  • Klodd, A. E., Eissenstat, D. M., Wolf, T. K., & Centinari, M. (2016). Coping with cover crop competition in mature grapevines. Plant and Soil, 400, 391–402.

    Article  CAS  Google Scholar 

  • Komárek, M., Száková, J., Rohosková, M., Javorská, H., Chrastný, V., & Balík, J. (2008). Copper contamination of vineyard soils from small wine producers: a case study from the Czech Republic. Geoderma, 147, 16–22.

    Article  Google Scholar 

  • Lakanen, E., & Ervio, R. A. (1971). A comparison of eight extractants for the determination of plant-available micronutrients in soils. Acta Agral Fenn, 123, 223–232.

    Google Scholar 

  • Lamb, D. T., Naidu, R., Ming, H., & Megharaj, M. (2012). Copper phytotoxicity in native and agronomical plant species. Ecotoxicology and Environmental Safety, 85, 23–29.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Magalhães, J., Sequeira, E. M., & Lucas, M. D. (1985). Copper and zinc in vineyards of central Portugal. Water, Air, and Soil Pollution, 26, 1–17.

    Article  Google Scholar 

  • Martin-Dupont, F., Gloaguen, V., Granet, R., Guilloton, M., Morvan, H., & Krausz, P. (2002). Heavy metal adsorption by crude coniferous: a modeling study. Journal of Environmental Science and Health, Part A, 37, 1063–1073.

    Article  Google Scholar 

  • Mirlean, N., Roisenberg, A., & Chies, J. O. (2007). Metal contamination of vineyard soils in wet subtopics (southern Brazil). Environmental Pollution, 149, 10–17.

    Article  CAS  Google Scholar 

  • Nehrenheim, E., & Gustafsson, J. P. (2008). Kinetics sorption modeling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments. Bioresource Technology, 99, 1571–1577.

    Article  CAS  Google Scholar 

  • Núñez-Delgado, A., Álvarez-Rodríguez, E., Fernández-Sanjurjo, M. J., Nóvoa-Muñoz, J. C., Arias-Estévez, M., & Fernández-Calviño, D. (2015). Perspectives on the use of by-products to treat soil and water pollution. Microporous and Mesoporous Materials, 210, 199–201.

    Article  Google Scholar 

  • Paradelo, R., Cutillas-Barreiro, L., Soto-Gómez, D., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., & Núñez-Delgado, A. (2016). Study of metal transport through pine bark for reutilization as a biosorbent. Chemosphere, 149, 146–153.

    Article  CAS  Google Scholar 

  • Pietrzak, U., & McPhail, D. C. (2004). Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma, 122, 151–166.

    Article  CAS  Google Scholar 

  • Prosdocimi, M., Cerdá, A., & Tarolli, P. (2016). Soil water erosion on Mediterranean vineyards: a review. Catena, 141, 1–21.

    Article  Google Scholar 

  • Quintáns-Fondo, A., Ferreira-Coelho, G., Paradelo-Núñez, R., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., & Núñez-Delgado, A. (2016). Promoting sustainability in the mussel industry: mussel shell recycling to fight fluoride pollution. Journal of Cleaner Production, 131, 485–490.

    Article  Google Scholar 

  • Ramos, M. C., Benito, C., & Martínez-Casasnovas, J. A. (2015). Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated, basin. Agriculture, Ecosystems and Environment, 213, 194–208.

    Article  CAS  Google Scholar 

  • Rees, F., Germain, C., Sterckeman, T., & Morel, J.-L. (2015). Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant and Soil, 395, 57–73.

    Article  CAS  Google Scholar 

  • Ruíz-Colmenero, M., Bienes, R., & Marques, M. J. (2011). Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil and Tillage Research, 117, 211–223.

    Article  Google Scholar 

  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass (p. 15). Golden, CO: National Renewable Energy Laboratory.

    Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Methods of soil Analysis. Part 3. Chemical Methods (pp. 1201–1230). SSSA Book Series: 5, Madison, Wisconsin, USA.

  • Tiecher, T. L., Ceretta, C. A., Ferreira, P. A. A., Lourenzi, C. R., Tiecher, T., Girotto, E., Nicoloso, F. T., Soriani, H. H., De Conti, L., Mimmo, T., Cesco, S., & Brunetto, G. (2016). The potential of Zea mays L. in remediating copper and zinc contaminated soils for grapevine production. Geoderma, 262, 52–61.

    Article  CAS  Google Scholar 

  • Trigo-Córdoba, E., Bouzas-Cid, Y., Orriols-Fernández, I., Díaz-Losada, E., & Mirás-Avalos, J. M. (2015). Influence of cover crop treatments on the performance of a vineyard in a humid region. Spanish Journal of Agricultural Research, 13, 1–12.

    Article  Google Scholar 

  • Vavoulidou, E., Avramide, E. J., Papadopoulos, P., Dimirkou, A., Charoulis, A., & Konstantinidou-Doltsinis, S. (2005). Copper content in agricultural soils related to cropping systems in different regions of Greece. Communications in Soil Science and Plant Analysis, 36, 759–773.

    Article  CAS  Google Scholar 

  • Verdejo, J., Ginocchio, R., Sauvé, S., Salgado, E., & Neaman, A. (2015). Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotox Environ Safe, 122, 171–177.

    Article  CAS  Google Scholar 

  • Wong, M. H., & Bradshaw, A. D. (1982). A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytologist, 91, 255–261.

    Article  CAS  Google Scholar 

  • Ying, T., Youn-Ming, L., Huang, C. Y., Jian, L., Zhen-Gao, L., & Christie, P. (2008). Tolerance of grasses to heavy metals and microbial functional diversity in soils contaminated with copper mine tailings. Pedosphere, 18, 363–370.

    Article  Google Scholar 

  • Zhou, Z. C., & Shangguan, Z. P. (2007). The effects of ryegrass roots and shoots on loess erosion under simulated rainfall. Catena, 70, 350–355.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish Ministry of Economy and Competitiveness by means of the research projects CGL2012-36805-C02-01 and CGL2012-36805-C02-02. It was also partially financed by the European Regional Development Fund (ERDF) (FEDER in Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fernández-Calviño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutillas-Barreiro, L., Fernández-Calviño, D., Núñez-Delgado, A. et al. Pine Bark Amendment to Promote Sustainability in Cu-Polluted Acid Soils: Effects on Lolium perenne Growth and Cu Uptake. Water Air Soil Pollut 228, 260 (2017). https://doi.org/10.1007/s11270-017-3437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3437-y

Keywords

Navigation