Skip to main content
Log in

Use of Lysimeters to Assess Water Balance Components in Grassland and Atlantic Forest in Southern Brazil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aimed to quantify the water balance components at a grassland and a forest site representative of the Atlantic Forest biome in southern Brazil using drainage lysimeters. Since it was not possible to place mature trees on the forest lysimeter, it was planted with young trees and understory vegetation. Data from this lysimeter and computations with the water balance and the Penman-Monteith equation were then used to assess the values of the water balance components for the mature forest.

Total precipitation during the study period was 2308 mm. In the forest environment, 46% thereof was intercepted by the canopy from where it later evaporated. Hence, much less rain reached the ground than under grassland. Runoff from both sites was <1% of precipitation and therefore not a significant factor in the water balance. Cumulative drainage amounted to 1136 mm from grassland: from the mature forest, it was estimated to be 389 mm. There were two reasons for this low value under forest: Interception prevented a lot of water from reaching the ground, and the actual evapotranspiration from the mature forest was much higher than from grassland (1231 mm compared to 1964 mm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Almeida, A. C., & Soares, J. V. (2003). Comparação entre o uso de água em plantações de Eucalyptus grandis e floresta ombrófila densa (mata atlântica) na costa leste do Brasil. Revista Árvore, 27, 159–170.

    Article  Google Scholar 

  • Andrade Deon, E. H. D. (2015). Interceptação da chuva em floresta estacional em Santa Maria. RS. M.Sc. Thesis. Santa Maria: Universidade Federal de Santa Maria.

  • Arcova, F. C. S., Cicco, V., & Rocha, P. A. B. (2003). Precipitação efetiva e interceptação das chuvas por floresta de Mata Atlântica em uma microbacia experimental em Cunha - SP. Revista Árvore, 27, 257–262.

    Article  Google Scholar 

  • Ávila, L. F. (2011). Balanço hídrico em um remanescente de Mata Atlântica da Serra da Mantiqueira, MG. M.Sc. Thesis. Lavras: Universidade Federal de Lavras.

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Brutsaert, W. (2005). Hydrology—an introduction. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Campeche, L. F. M. S., Netto, A. O. A., Sousa, I. F., Faccioli, G. G., Silva, V. P. R., & Azevedo, P. V. (2011). Lisímetro de pesagem de grande porte. Parte I: desenvolvimento e calibração. Revista Brasileira de Engenharia Agrícola e Ambiental, 15, 519–525.

    Article  Google Scholar 

  • Carvalho, D. F., Silva, L. D. B., Guerra, J. G. M., Cruz, F. A., & Souza, A. P. (2007). Instalação, calibração e funcionamento de um lisímetro de pesagem. Engenharia Agrícola, 27, 363–372.

    Article  Google Scholar 

  • Cicco, V. (2009). Determinação da evapotranspiração pelos métodos dos balanços hídrico e de cloreto e a quantificação da interceptação das chuvas na Mata Atlântica: São Paulo, SP e Cunha, SP. M.Sc. Thesis. São Paulo: Faculdade de Filosofia, Letras e Ciências Humanas da Universidade de São Paulo.

  • Dourado Neto, D., Nielsen, D. R., Hopmans, J. W., Reichardt, K., Bacchi, O. O. S., & Lopes, P. P. (2001). Programa para confecção da curva de retenção de água no solo, modelo Van Genuchten. Soil Water Retention Curve, SWRC (version 3.00 beta). Piracicaba: Universidade de São Paulo.

    Google Scholar 

  • Faria, R. T., Campeche, F. S. M., & Chibana, E. Y. (2006). Construção e calibração de lisímetros de alta precisão. Revista Brasileira de Engenharia Agrícola e Ambiental, 10, 237–242.

    Article  Google Scholar 

  • Feltrin RM. 2009. Comportamento das variáveis hidrológicas do balanço hídrico do solo em lisímetros de drenagem. M.Sc. Thesis. Santa Maria: Universidade Federal de Santa Maria.

  • Feltrin, R. M., Paiva, J. B. D., Paiva, E. M. C. D., & Beling, F. A. (2011). Lysimeter soil water balance evaluation for an experiment developed in the southern Brazilian Atlantic Forest region. Hydrological Processes, 25, 2321–2328.

    Article  Google Scholar 

  • Fujieda, F., Kudoh, T., Cicco, V., & Carvalho, J. L. (1997). Hydrological processes at two subtropical forest catchments: the Serra do Mar, São Paulo, Brazil. Journal of Hydrology, 196, 26–46.

    Article  Google Scholar 

  • Gardner, W. H. (1960). Dynamic aspects of soil water availability to plants. Soil Science, 89, 63–73.

    Article  Google Scholar 

  • Goss, M. J., & Ehlers, W. (2009). The role of lysimeters in the development of our understanding of soil water and nutrient dynamics in ecosystems. Soil Use and Management, 25, 213–223.

    Article  Google Scholar 

  • Harsch, N., Brandenburg, M., & Klemm, O. (2009). Large-scale lysimeter site St. Arnold, Germany: analysis of 40 years of precipitation, leachate and evapotranspiration. Hydrology and Earth System Sciences Discussions, 13, 305–317.

    Article  Google Scholar 

  • Hillel, D. (1998). Environmental soil physics. San Diego: Academic Press.

    Google Scholar 

  • Hoffmann, M., Schwartengräber, R., Wessolek, G., & Peters, A. (2016). Comparison of simple rain gauge measurements with precision lysimeter data. Atmospheric Research, 174-175, 120–123.

    Article  Google Scholar 

  • Israelsen, O. W. (1927). The application of hydrodynamics to irrigation and drainage problems. Hilgardia, 2, 479–528.

    Article  Google Scholar 

  • Köppen, W. (1948). Climatologia: con un estudio de los climas de la tierra. México: Fondo de Cultura Econômica.

    Google Scholar 

  • Kramer, I., & Holscher, D. (2009). Rainfall partitioning along a tree diversity gradient in a deciduous old-growth forest in Central Germany. Ecohydrology, 2, 102–114.

    Article  Google Scholar 

  • Lanthaler, C. (2004). Lysimeter stations and soil hydrology measuring sites in Europe—purpose, equipment, research results, future developments. M.Sc. Thesis. Graz: School of Natural Sciences, Karl Franzens University.

  • Meissner, R., Seeger, J., Rupp, H., Seyfarth, M., & Borg, H. (2007). Measurement of dew, fog, and rime with a high-precision gravitation lysimeter. Journal of Plant Nutrition and Soil Science, 170, 335–344.

    Article  CAS  Google Scholar 

  • Meissner, R., Rupp, H., Seeger, J., Ollesch, G., & Gee, G. W. (2010a). A comparison of water flux measurements: passive wick-samplers versus drainage lysimeters. European Journal of Soil Science, 61, 609–621.

    Article  CAS  Google Scholar 

  • Meissner, R., Prasad, M. N. V., Du Laing, G., & Rinklebe, J. (2010b). Lysimeter application for measuring the water and solute fluxes with high precision. Current Science, 99, 601–609.

    Google Scholar 

  • Müller, J., & Bolte, A. (2009). The use of lysimeters in forest hydrology research in north-east Germany. Agriculture and Forestry Research, 59, 1–10.

    Google Scholar 

  • Oliveira, N. T., Castro, N. M. R., & Goldenfum, J. A. (2010). Influência da palha no balanço hídrico em lisímetros. Revista Brasileira de Recursos Hídricos, 15, 93–103.

    Article  Google Scholar 

  • Otto, C. (2012). Vergleich von TDR-Sonden- und Wägungsmesswerten von Lysimetern zur Bestimmung von Wassergehaltsänderungen im Boden. B.Sc. Thesis. Halle: Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg.

  • Pezzopane, J. E. M., dos Reis, G. G., Reis, M. G. F., & Costa, J. M. N. (2005). Caracterização da radiação solar em fragmento de Mata Atlântica. Revista Brasileira de Agromeleorologia, 13, l1–19.

    Google Scholar 

  • Pinheiro, M. P. (2007). Variação sazonal no microclima do sub-bosque e seus efeitos no estabelecimento de mudas de Caesalpinia echinata Lam. e de Cariniana legalis (Mart.) Kuntze em floresta de encosta e cabruca no sul da Bahia, Brasil. M.Sc. Thesis. Ilhéus: Universidade Estadual de Santa Cruz.

  • Pinheiro, A., Kaufmann, V., Zucco, E., Depiné, H., Castro, N. M. R., Soares, P. A., & Perazzoli, M. (2010). Avaliação das variáveis hidrológicas do balanço hídrico em área agrícola com cultivo de milho (Zea mays) através de uso de lisímetro. Revista de estudos ambientais, 12, 73–81.

    Google Scholar 

  • Richter, D. (1995). Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagsmessers. Offenbach: Berichte des Deutschen Wetterdienstes.

    Google Scholar 

  • Santos, F. X., Rodrigues, J. J. V., Montenegro, A. A. A., & Moura, R. F. (2008). Desempenho de lisímetro de pesagem hidráulica de baixo custo no semi-árido nordestino. Engenharia Agrícola, 28, 115–124.

    Article  Google Scholar 

  • Sari, V. (2012). Interceptação da chuva em diferentes formações florestais na região de Santa Maria - RS. M.Sc. Thesis. Santa Maria: Universidade Federal de Santa Maria.

  • Schroedter, H. (1985). Verdunstung: Anwendungsorientierte Meßverfahren und Bestimmungsmethoden. Berlin: Springer.

    Book  Google Scholar 

  • Soil Survey Staff. (1999). Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Washington: Agric. Handbook 436, United States Department of Agriculture, Natural Resources Conservation Service.

    Google Scholar 

  • Tucci, C. E. M. (2002). Impactos da variabilidade climática sobre os recursos hídricos do Brasil. Brasília: Agência Nacional das Águas.

    Google Scholar 

  • Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsatured soils. Soil Science Society of American Journal, 44, 892–898.

    Article  Google Scholar 

  • Veihmeyer, F. J., & Hendrickson, A. H. (1931). The moisture equivalent as a measure of the field capacity of soils. Soil Science, 32, 181–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the Ministério da Ciência, Tecnologia e Inovação (MCT), Financiadora de Estudos e Projetos (FINEP), Fundo Setorial de Recursos Hídricos (CT-Hidro), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support. Our gratitude also goes to the Climasul project and scientific and technological cooperation between Brazil and Germany, which was funded by the International Bureau of the German Federal Ministry of Education and Research (BMBF) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, funding number 01DN12055. Furthermore, thanks to the Department of Sanitary and Environmental Engineering, Graduate Program in Agricultural Engineering and Graduate Program in Civil Engineering of the Federal University of Santa Maria, Brazil, for the support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Matias Feltrin.

Additional information

Eloiza Maria Cauduro Dias de Paiva died before publication of this work was completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feltrin, R.M., de Paiva, J.B.D., de Paiva, E.M.C.D. et al. Use of Lysimeters to Assess Water Balance Components in Grassland and Atlantic Forest in Southern Brazil. Water Air Soil Pollut 228, 247 (2017). https://doi.org/10.1007/s11270-017-3423-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3423-4

Keywords

Navigation