Skip to main content
Log in

Throughfall, stemflow, and interception characteristics of coniferous forest ecosystems in the western black sea region of Turkey (Daday example)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study aims to identify precipitation, throughfall, stemflow, precipitation, and interception processes in pure black pine, pure Scots pine, and mixed black pine–Scots pine forest ecosystems and present the precipitation partitioning according to different stand types. Throughfall and stemflow measurements were performed using five standard precipitation gauges in a pilot area established to represent pure black pine, pure Scots pine, and mixed black pine–Scots pine stands in the Bezirgan Basin. The total precipitation was measured in an open field close to the study area. Throughfall values were calculated as the percentage of precipitation measured in an open field. According to the results of the study, the throughfall values were 69.8% in black pine, 73.9% in Scots pine, and 77.7% in the mixed black pine–Scots pine stands; the stemflow values were 2.6% in black pine, 5.9% in Scots pine, and 3.1% in the mixed black pine–Scots pine stands; the amounts of precipitation reaching the forest floor were 72.3% in black pine, 79.8% in Scots pine, and 80.7% in the mixed black pine–Scots pine stands; and the interception values were found to be 27.7% in black pine, 20.2% in Scots pine, and 19.2% in the mixed black pine–Scots pine stands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acharya, B. S., Stebler, E., & Zou, C. B. (2016). Monitoring litter interception of rainfall using leaf wetness sensor under controlled and field conditions. Hydrological Processes, 31, 240–249.

    Article  Google Scholar 

  • Ahmadi, M.T., Attarod, P., Mohadjer, M.M.R., Rahmani, R., & Fathi, J. (2009). Partitioning rainfall into throughfall, stemflow, and interception loss in an oriental beech (Fagus orientalis Lipsky) forest during the growing season. Turk. J. Agric. For. 33: 557–568. TÜBİTAK, doi:https://doi.org/10.3906/tar-0902-3.

  • Akkemik, U., Köse, N., Aras, A., & Dalfes, N. (2005). Important dry and wet years occurred in the last 350 years in Anatolia. Turkey Quaternary Symposium. 8–11 May 2016. Istanbul Technical University Eurasia Institute of Earth Sciences, İstanbul, Turkey.

  • Anonymous, (1993). Kastamonu Province land use map, Directorate of Printing Department, print no: 189. Forest management and planning department documents, Ankara.

  • Anonymous. (2010). 2010–2029 Daday Forest management plan. Kastamonu: Kastamonu Forest Regional Directorate.

    Google Scholar 

  • Arnell, N. (2002). Hydrology and global environmental change (p. 346). Harlow: Pearson Education.

    Google Scholar 

  • Asadian, Y., & Weiler, M. (2009). A new approach in measuring rainfall interception by urban trees in coastal British Columbia. Water Quality Research Journal of Canada, 44(1), 16–25.

    CAS  Google Scholar 

  • Aussenac, G. (1968). Interception des precipitations par le couvert forestier. Annales des Sciences Forestières, 25(3), 135–156.

    Article  Google Scholar 

  • Aussenac, G., & Boulangeat, C. (1980). Interception des precipitations et Evapotranspiration Reelle dans Des Peuplements de Feuillı (Fagus sylvatica L.) et de Resineux (Pseudotsuga menziesii (Mirb) Franco). Annales des Sciences Foretieres, 37(2), 91–107.

    Article  Google Scholar 

  • Balazs, A. (1983). Ein kausalanalytischer beitrag zur Quantifizierung des bestands- und Nettoniederschlages von Waldbestanden. Kirchzarten: Verlag Beitrage zur Hydrologie.

    Google Scholar 

  • Balcı, A. N. (1958). Elmalı Barajının siltasyondan korunması imkanları ve vejetasyon su düzeni üzerine araştırmalar. Published PhD Thesis, İstanbul University Institute of Science, İstanbul, Turkey

  • Balcı, A. N., & Özyuvacı, N. (1988). Forest and pasture hydrology. Istanbul: Istanbul University Faculty of Forestry Watershed Management Department, Master’s course notes.

    Google Scholar 

  • Basea, F., Elsenbeera, H., Neill, C., & Kruschec, A. V. (2012). Differences in throughfall and net precipitation between soybean and transitional tropical forest in the southern Amazon, Brazil. Agriculture, Ecosystems and Environment, 159, 19–28.

    Article  Google Scholar 

  • Brutsaert, W. (2005). Hydrology (p. 605). New York: Cambridge University Press.

    Book  Google Scholar 

  • Büyüköztürk, Ş. (2010). Data Analysis Handbook for the Social Sciences. Ankara: Pagem Akademi.

    Google Scholar 

  • Çepel, N. (1965). Research on humidity economy in forest soils and determination of amounts of interception, stemflow and soil moisture in some black pine, beech, oak stands of Belgrade forest through systematic measurements. 1st Edition, General Directorate of Forestry Publication No: 418, Serial No: 4, Istanbul.

  • Çepel, N. (1967). Interzeption in Einem Buchen-Einem Eichen Und Einem Kiefernbestand Des Belgrader Waldes Bei Istanbul. Forstw. Cbl., 86 Jahrg., H.5, 301–314.

  • Çepel, N. (1971). Effects of plants on the amount of precipitation reaching the soil and five-year results of a survey conducted in the Belgrade forest. Istanbul University Faculty of Forestry Journal B, 21(2).

  • Çepel, N. (1983). Forest Ecology. 2nd Edition. I.U. publication No: 3140, Faculty of forestry publication No: 337. Istanbul.

  • Çepel, N. (1986). Ecological principals of land use planning of dams for upper rainfall basins. Istanbul University Faculty of Forestry Journal B, 36(2), 17–27.

    Google Scholar 

  • Çepel, N., & Eruz, E. (1969). Interception results obtained in beech, oak and pine stands in the Belgrade forest, five-year measurement results. Istanbul University Faculty of Forestry Journal B, 19(2), 83–99.

    Google Scholar 

  • Crockford, R. H., & Richardson, D. P. (1990). Partitioning of rainfall in a eucalypt forest and pine plantation in Southeastern Australia: IV. The relationship of interception and canoScots pine storage capacity, the interception of these forests and the effect on interception of thinning the pine plantation. Hydrological Processes, 4, 169–188.

    Article  Google Scholar 

  • Devlaeminck, R., De Schrijver, A., Hermy, M. (2005). Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders. Science of the Total Environment, 337, 241–252.

    Article  CAS  Google Scholar 

  • Dingman, S. (2002). Physical hydrology (p. 646). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • DSI. (2009). Turkey water report. Ankara. URL: [http://www.DSI.gov.tr/english/pdf_files/ TurkeyWaterReport.pdf].

  • Falkenmark, M., & Lindh, G. (1974). How can we cope with the water resources situation by the year 2015? Ambio 3(3/4). Population, 1974, 114–122.

  • FSC. (2017). Requirements for use of the FSCTM trademarks by certificate holders FSC-STD-50-001 V2–0. Bonn: FSC Global Development.

    Google Scholar 

  • Gash, J., & Shuttleworth, W. (2007). Evaporation. Benchmark papers in hydrology, vol. 2 (p. 521). Wallingford: IAHS Press.

    Google Scholar 

  • Gerrits, A. M. J., Savenije, H. H. G., & Pfister, L. (2007). Forest floor interception measurements. IHP-VI Technical Documents in Hydrology, 81, 81–86.

    Google Scholar 

  • Gül, M. (2013). Daday district analysis. Obtained at the date of 08/03/2018 from the address https://www.kuzka.gov.tr/Icerik/Dosya/www.kuzka.gov.tr_16_JY0V76CL_daday_ilce_analizi.pdf.

  • Hewlet, J. D. (1982). Principles of forest hydrology. Press (2), ISBN 0–8203–0608-8. Athens: The University of Georgia Press.

    Google Scholar 

  • Holwerda, F., Scatena, F. N., & Bruijnzeel, L. A. (2006). Throughfall in a Puerto Rican lower montane rain forest: a comparison of sampling strategies. Journal of Hydrology, 327, 592–602.

    Article  Google Scholar 

  • Horton, R. (1919). Rainfall interception. Monthly Weather Review, 47, 603–623.

    Article  Google Scholar 

  • Huber, A., & Iroume, A. (2001). Variability of annual rainfall partitioning for different sites and forest covers in Chile. Journal of Hydrology, 248, 78–92.

    Article  Google Scholar 

  • İşler, E. (2010). Central Kastamonu, Daday and Safranbolu traditional Turkish house ceilings. Published Master’s thesis, Gazi University Institute of Science. Ankara.

  • Janík, R., & Pichler, J. (2008). Amounts of throughfall and lysimetric water in a submountain beech forest in the Kremnické vrchy Mts.(West Carpathian Mts., Slovakia). Journal of Forest Science, 54(5), 207–211.

    Article  Google Scholar 

  • Kang, Y., Wang, Q., & Liu, H. (2005). Winter wheat canoScots pine interception and its influence factors under sprinkler irrigation. Agricultural Water Management, 74, 189–199.

    Article  Google Scholar 

  • Konishi, S., Tani, M., Kosugi, Y., Takanashi, S., Sahat, M. M., Nik, A. R., ... & Okuda, T. (2006). Characteristics of spatial distribution of throughfall in a lowland tropical rainforest, Peninsular Malaysia. Forest Ecology and Management, 224(1–2), 19–25.

  • Kuzka, (2013). TR82 level (Kastamonu, Çankırı and Sinop Provinces) regional plan 2014-2023. Obtained at the date of 14/06/2014 from the address http://www.kuzka.org.tr/dosya/2014-2023_bolge_plani_taslagi.pdf.

  • Leonard, R.E. (1961). Interception of precipitation by northern hardwoods. U.S. For. Serv. Ntheast For. Exp. Sta. Pap. 159: 16.

  • Levia, D. F., & Frost, E. E. (2003). A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Department of Geography, Southern Illinois University, Carbondale, IL 62901-4514. J. Hydrol, 274, 1–29 USA.

    Article  CAS  Google Scholar 

  • Lewis, J. (2003). Stemflow estimation in a redwood forest using model-based stratified random sampling. Environmetrics, 14, 559–571.

    Article  Google Scholar 

  • Liua, H., Zhanga, R., Zhanga, L., Wanga, X., Li, Y., & Huang, G. (2015). Stemflow of water on maize and its influencing factors. Agricultural Water Management, 158, 35–41.

    Article  Google Scholar 

  • Livesley, S. J., Baudinette, B., & Glover, D. (2014). Rainfall interception and stemflow by eucalyptstreet trees—the impacts of canoScots pine density and bark type. Urban Forestry & Urban Greening, 13, 192–197.

    Article  Google Scholar 

  • Maloney, D., Bennett, S., De Groot, A., & Banner, A. (2002). Canopy interception in a hypermaritime forest on the north coast of British Columbia. Forest Sci. Prince Rupert Forest Region, 49.

  • Marin, C. T., Bouten, W., & Sevink, J. (2000). Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. Journal of Hydrology, 237, 40–57.

    Article  Google Scholar 

  • Molchanov, A. A. (1963). The hydrological role of forests. (p. 407). Israel: Israel Program for Scientific Translations.

    Google Scholar 

  • Muluk, Ç.B., Turak, A., Yılmaz, D., Zeydanlı, U., & Bilgin, C.C. (2009). Hydroelectric Power Station effects expert report: Barhal Valley. TEMA Foundation Kaçkar Mountains Sustainable Forest Use and Conservation Project, obtained at the date of 21/09/2017 http://sertifika.tema.org.tr/_Ki/CevreKutuphanesi/Documents/HES_Etkileri_Raporu.pdf.

  • Muluk, Ç.B., Kurt, B., Turak, A., Türker, A., Çalışkan, M.A., Balkız, Ö., Gümrükçü, S., Sarıgül, G., & Zeydanlı, U. (2013). Water Status and New Approaches in Water Management in Turkey: Environmental Perspective. Business World and Sustainable Development Association–Nature Conservation Center, obtained at the date of 23/08/2014 from the address http://www.dkm.org.tr/Dosyalar/YayinDosya_RnF27jIq.pdf.

  • Muzylo, A., Llorens, P., Valente, F., Keizer, J. J., Domingo, F., & Gash, J. H. C. (2009). A review of rainfall interception modelling. Journal of Hydrology, 370, 191–206.

    Article  Google Scholar 

  • Navar, J. (2017). Fitting rainfall interception models to forest ecosystems of Mexico. Journal of Hydrology, 548, 458–470.

    Article  Google Scholar 

  • Nihlgard, B. (1969). Distribution of rainfall in beech and spruce forest, a comparison. Botaniska Notiser, 122(2), 308–309.

    Google Scholar 

  • Özhan, S. (1982). Empirical determination of evapotranspiration in some stands of the Belgrade forest and comparison of the results with amiric models. 1st Edition. I.U. Publication No: 2906, Faculty of Forestry Publication No: 311, Istanbul.

  • Özhan, S. (2004). Watershed management, I.U. Rectorate publication no: 4510 (p. 385). Istanbul: Faculty of Forestry Publication no: 481.

    Google Scholar 

  • Özhan, S., Hızal, A., & Yurtseven, İ. (2011). Throughfall in the mixed Oak-Breech forest. I. U. Faculty of Forestry Journal, 61(1), 25–30 Istanbul.

    Google Scholar 

  • Özyuvacı, N. (1976). Some plant-soil-water relations affecting hydrologic situation in Arnavutköy Creek Precipitation Basin. Istanbul: I.U. Faculty of Forestry Publication No: 221.

    Google Scholar 

  • Özyuvacı, N., Özhan, S., Gökbulak, F., Serengil, Y., & Balcı, A. N. (2004). Effect of selective cutting on streamflow in an oak-beech forest ecosystem. Water Resources Management, 18, 249–262.

    Article  Google Scholar 

  • Pehl, C. E., & Ray, K. F. (1983). Atmospheric nutrient inputs to three Forest types in East Texas. Forest Ecology and Management, 7(1983/1984), 11–18.

    Article  CAS  Google Scholar 

  • Pérez-Suárez, M., Fenn, M. E., Cetina-Alcala, V. M., & Aldrete, A. (2008). The effects of canopy cover on throughfall and soil chemistry in two forest sites in the México City air basin. Atmósfera, 21(1), 83–100.

    Google Scholar 

  • Prada, S., Sequeira, M. M., Figueira, C., & Silva, M. O. (2009). Fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal). Agricultural and Forest Meteorology, 149, 1179–1187.

    Article  Google Scholar 

  • Riedl, O., & Zachar, D. (1984). Forest amelioration (1st ed.). New York: Elsevier.

    Google Scholar 

  • Rutter, A., Kershaw, K., Robins, P., & Morton, A. (1971). A predictive model of rainfall interception in forest. I. Derivation of the model from observation in a plantation of Corsican pine. Agricultural Meteorology, 9, 367–384.

    Article  Google Scholar 

  • Rutter, A., Morton, A., & Robins, P. (1975). A predictive model of rainfall interception in forests. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, 12, 367–380.

    Article  Google Scholar 

  • Saito, T., Matsuda, H., Komatsu, M., Xiang, Y., Takahashi, A., Shinohara, Y., & Otsuki, K. (2013). Forest canoScots pine interception loss exceeds wet canoScots pine evaporation in Japanese cypress (Hinoki) and Japanese cedar (Sugi) plantations. Journal of Hydrology, 507, 287–299.

    Article  Google Scholar 

  • Şen, G., & Genç, A. (2017). The definition of the problems in the forest management certification application process from forester’s perspectives in Turkey. Journal of Sustainable Forestry, 36(4), 388–419.

    Google Scholar 

  • Sen, G., & Genc, A. (2018). Perceptions and expectations on forest management certification of foresters in state forest enterprises: a case study in Turkey. Applied Ecology and Environmental Research, 16(1), 867–891.

    Article  Google Scholar 

  • Siles, P., Vaast, P., Dreyer, E., & Harmand, J. M. (2010). Rainfall partitioning into throughfall, stemflow and interception loss in a coffee (Coffea arabica L.) monoculture compared to an agroforestry system with Inga densiflora. Journal of Hydrology, 395, 39–48.

    Article  Google Scholar 

  • Sun, X., Onda, Y., Kato, H., Gomi, T., & Komatsu, H. (2015). Effect of strip thinning on rainfall interception in a Japanese cypress plantation. Journal of Hydrology, 525, 607–618.

    Article  Google Scholar 

  • Tang, C.Y. (1993). Water and solute transport in a Pinus forest. Tracer in Hydrology, İAHS Publ. No.215, 347–348.

  • Tsiko, C. T., Makurira, H., Gerrits, A. M. J., & Savenije, H. H. G. (2011). Measuring forest floor and canoScots pine interception in a savannah ecosystem. Physics and Chemistry of the Earth, Parts A/B/C, 47–48, 122–137 2012.

    Google Scholar 

  • Turkoglu, T., & Tolunay, A. (2014). The qualitative research of the FSC Forest Management Certification effect on Muğla forests. II. National Mediterranean Forest and Environment Symposium. 22–24 October 2014. Isparta. 506–517.

  • UNESCO, (1999). Summary of the monograph “world water resources at the beginning of the 21st century.” IHP UNESCO, obtained at the date of 14/09/2014 from http://webworld.unesco.org/water/ihp/db/shiklomanov/summary/html/summary.html.

  • URL-1. Kastamonu Regional Directorate of Forestry–Forestry Assets of Kastamonu, obtained at the date of 05/07/2015. URL: http://kastamonuobm.ogm.gov.tr/Sayfalar/Ormanlarimiz/OrmanVarligi.aspx

  • Vialatte, F. B., & Cichocki, A. (2008). Spit test Bonferonni correction for QEEG statistical maps. Biological Cybernetics, 98, 208–303.

    Article  Google Scholar 

  • Ward, R., & Robinson, M. (1990). Principles of hydrology (p. 365). London: McGraw-Hill Publishing Company.

    Google Scholar 

  • 2030 Water Resources Group (2009). Charting our Water Future: Economic frameworks to inform decision-making, obtained at the date of 06/07/2017.http://www.2030wrg.org/wp-content/uploads/2014/07/Charting-Our-Water-Future-Final.pdf.

  • WWAP. (2003). United Nations World Water Development Report: 3 Water for people, water for life, World Water Assessment Program, Paris, UNESCO Publishing, obtained at the date of 07/03/2013 from http://www.un.org/esa/sustdev/publications/WWDR_english_129556e.pdf

  • WWAP (2012). The United Nations World Water Development Report 4, Volume 1: Managing Water under Uncertainty and Risk. World Water Assessment Programme, Paris, UNESCO, obtained at the date of 11/01/2015. URL: http://www.un.org/esa/sustdev/publications/WWDR_english_129556e.pdf

  • Xiao, Q., & McPherson, E. G. (2002). Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosystems, 6, 291–302.

    Article  Google Scholar 

  • Xiao, Q., McPherso, E. G., Simpson, J. R., & Ustin, S. L. (1998). Raınfall ınterceptıon by Sacramento’s urban forest. Journal of Arboriculture, 24(4), 235–244.

    Google Scholar 

  • Xiao, Q., McPherso, E. G., Ustin, S. L., Grismer, M. E., & Simpson, J. R. (2000a). Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrological Processes, 14, 763–784.

    Article  Google Scholar 

  • Xiao, Q., McPherson, E. G., Ustin, S. L., & Grismer, M. E. (2000b). A new approach to modeling tree rainfall interception. Journal of Geophysical Research, 105(D23), 29,173–29,188.

    Article  Google Scholar 

  • Yeşilkaya, Y. (1979). The interception of rainfall by forest canopies in South East Scotland. Published PhD Thesis. University of Edinburgh Department of Forestry and NaturelResources, England, obtained at the date of 08/09/2017. https://www.era.lib.ed.ac.uk/handle/1842/11645.

  • Yurtseven, I., & Zengin, M. (2013). Neural network modeling of rainfall interception in four different forest stands. Annals of Forest Research, 56(2), 351–362.

    Google Scholar 

  • Yurtseven, İ., Serengil, Y., & Özhan, S. (2013). Estimating interception using artificial neural network in mixed Oak-Beech stand. I.U Faculty of Forestry Journal, 3(1), 19–25 Istanbul.

    Google Scholar 

  • Zengin, M. (1997). Comparison of Forest Ecosystems in Kocaeli Region in terms of hydrological Reforestations. Poplar and Fast Growing Forest Trees Research Institute, 182, p. 275, Izmit, obtained at the date of 06/08/2017. http://yayin.ogm.gov.tr/yaydepo/596.pdf.

  • Zhang, G., Zeng, G. M., Jiang, Y. M., Huang, G. H., Li, J. B., Yao, J. M., Tan, W., Xiang, R. J., & Zhang, X. L. (2005). Modeling and measurement of two-layer-CanoScots pine interception losses in a subtropical mixed Forest of Central-South China. Hydrology and Earth System Sciences Discussions, 2, 1995–2024, 2005.

    Article  Google Scholar 

  • Zhang, G., Zeng, G. M., Jiang, Y. M., Huang, G. H., Li, J. B., Yao, J. M., Tan, W., Xiang, R., & Zhang, X. L. (2006). Modelling and measurement of two-layer-canopy interception losses in a subtropical evergreen forest of central-south China. Hydrology and Earth System Sciences, 10, 65–77.

    Article  CAS  Google Scholar 

  • Zinke, P. J. (1967). Forest interception studies in the United States. Forest Hydrology. (pp. 137-161) Oxford, UK: Pergamon Press

Download references

Acknowledgements

This work was supported by the Kastamonu University [grant number KUBAP-01/2012-29].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senem Güneş Şen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, M., Güneş Şen, S. & Celik, S. Throughfall, stemflow, and interception characteristics of coniferous forest ecosystems in the western black sea region of Turkey (Daday example). Environ Monit Assess 190, 316 (2018). https://doi.org/10.1007/s10661-018-6657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6657-8

Keywords

Navigation