Skip to main content
Log in

Preparation of Activated Carbon from Sugarcane Bagasse Soot and Methylene Blue Adsorption

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sugarcane bagasse soot is an agro-industrial residue rich in carbon that can be transformed into value-added materials, such as activated carbons. Therefore, this work aimed at producing activated carbon from sugarcane bagasse soot, using CO2 at 800, 850, and 900 °C, and investigating its efficiency to adsorb methylene blue as model contaminant. The results showed that the surface area and pore volume increased in the obtained carbons, with high specific areas (up to 829 m2/g), and the isotherms of the N2 adsorption describe mesoporous materials. The morphology of the prepared activated carbons showed that sugarcane bagasse soot and the activated carbons kept the fibrous structure of sugarcane bagasse, but after activation, they have cavities that resemble a honeycomb. Adsorption studies with methylene blue dye showed that the activation process resulted in adsorption capacities up to 11 times higher than sugarcane bagasse soot, which is comparable with commercial activated carbon. Dye adsorption kinetics could be described by a pseudo-second-order dependency in the studied materials, and the adsorption isotherms were better fitted by the Langmuir model. It is emphasized that cost-effective materials that are similar to commercial activated carbon were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AL-Aoh, H. A., Yahya, R., Jamil Maah, M., & Radzi Bin Abas, M. (2013). Adsorption of methylene blue on activated carbon fiber prepared from coconut husk: isotherm, kinetics and thermodynamics studies. Desalination and Water Treatment, 52, 1–13. doi:10.1080/19443994.2013.831794.

    Google Scholar 

  • Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2000). Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Research, 34(3), 927–935. doi:10.1016/S0043-1354(99)00200-6.

    Article  CAS  Google Scholar 

  • Alena, A., & Sahu, O. (2013). Cogenerations of energy from sugar factory bagasse. American Journal of Energy Engineering, 1(2), 22–29. doi:10.11648/j.ajee.20130102.11.

    Article  Google Scholar 

  • Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273–2282. doi:10.1016/j.apenergy.2009.03.015.

    Article  CAS  Google Scholar 

  • Borlini, M. C., Mendonça, J. L. C. d. C., Vieira, C. M. F., & Monteiro, S. N. (2006). Influence of the sintering temperature in the physical, mechanical and micro-structure properties of red ceramic incorporated with sugar cane bagasse ash. Revista Matéria, 11(4), 436–443 https://www.materia.coppe.ufrj.br/sarra/artigos/artigo10799.

    Google Scholar 

  • Bulut, Y., & Aydin, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1–3), 259–267. doi:10.1016/j.desal.2005.10.032.

    Article  CAS  Google Scholar 

  • Costa, S. A. S. M., Mazzola, P. G., Silva, J. C. A. R., Pahl, R., Pessoa, A., & Costa, S. A. S. M. (2013). Use of sugar cane straw as a source of cellulose for textile fiber production. Industrial Crops and Products, 42, 189–194. doi:10.1016/j.indcrop.2012.05.028.

    Article  CAS  Google Scholar 

  • Cronje, K. J., Chetty, K., Carsky, M., Sahu, J. N., & Meikap, B. C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination, 275, 276–284. doi:10.1016/j.desal.2011.03.019.

    Article  CAS  Google Scholar 

  • El Qada, E. N., Allen, S. J., & Walker, G. M. (2006). Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chemical Engineering Journal, 124(1–3), 103–110. doi:10.1016/j.cej.2006.08.015.

    Article  Google Scholar 

  • Foo, K. Y., Lee, L. K., & Hameed, B. H. (2013). Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate. Bioresource Technology, 134, 166–172. doi:10.1016/j.biortech.2013.01.139.

    Article  CAS  Google Scholar 

  • Ghetti, P., Ricca, L., & Angelini, L. (1996). Thermal analysis of biomass and corresponding pyrolysis products. Fuel, 75(5), 565–573. doi:10.1016/0016-2361(95)00296-0.

    Article  CAS  Google Scholar 

  • Giles, C. H., Smith, D., & Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47(3), 755–765. doi:10.1016/0021-9797(74)90252-5.

    Article  CAS  Google Scholar 

  • Gonçalves, M., Guerreiro, M. C., Bianchi, M. L., Oliveira, L. C. A., Pereira, E. I., & Dallago, R. M. (2007). Produção de carvão a partir de resíduo de erva-mate para a remoção de contaminantes orgânicos de meio aquoso. Ciência e Agrotecnologia, 31(5), 1386–1391. doi:10.1590/S1413-70542007000500017.

    Article  Google Scholar 

  • Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal—a review. Journal of Environmental Management, 90(8), 2313–2342. doi:10.1016/j.jenvman.2008.11.017.

    Article  CAS  Google Scholar 

  • Gurgel, L. V. A., & Gil, L. F. (2009). Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research, 43(18), 4479–4488. doi:10.1016/j.watres.2009.07.017.

    Article  CAS  Google Scholar 

  • Gusmão, K. A. G., Gurgel, L. V. A., Melo, T. M. S., & Gil, L. F. (2013). Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects. Journal of Environmental Management, 118, 135–143. doi:10.1016/j.jenvman.2013.01.017.

    Article  Google Scholar 

  • Ho, Y.-S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Kluwer Academic Publishers, 59(1), 171–177.

    CAS  Google Scholar 

  • Ho, Y., & McKay, G. (1999). A kinetic study of dye sorption by biosorbent waste product pith. Resources, Conservation and Recycling, 25(3–4), 171–193. doi:10.1016/S0921-3449(98)00053-6.

    Article  Google Scholar 

  • Israel, J., Feu, C., & Carvão, U. E. (2005). RECURSOS ENERGÉTICOS DO BRASIL: PREÇOS DE PETRÓLEO: O TERCEIRO CHOQUE? Evolução dos Preços Internacionais do Petróleo, (47).

  • Kumar, K. V. (2006). Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. Journal of Hazardous Materials, 137(3), 1538–1544. doi:10.1016/j.jhazmat.2006.04.036.

    Article  CAS  Google Scholar 

  • Ma, Y., Wang, Q., Wang, X., Sun, X., & Wang, X. (2015). A comprehensive study on activated carbon prepared from spent shiitake substrate via pyrolysis with ZnCl2. Journal of Porous Materials, 22(1), 157–169. doi:10.1007/s10934-014-9882-8.

    Article  Google Scholar 

  • Marsh, H., & Rodriguez-Reinoso, F. (2006). Activated carbon. Technology (Vol. 94). Elsevier Science & Technology Books. doi:10.1016/0160-9327(81)90123-X.

  • Mathieu, E. S., Carrizosa, A. B., Sierra, R., Giraldo, L., & Piraján, J. C. M. (2014). Carboxylic acid recovery from aqueous solutions by activated carbon produced from sugarcane bagasse. Adsorption, 20, 935–943. doi:10.1007/s10450-014-9638-4.

    Article  Google Scholar 

  • Oha, W. A., Luaa, S. K., Donga, Z., & Lima, T. T. (2015). Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes. Journal of Hazardous Materials, 284, 1–9. doi:10.1016/j.jhazmat.2014.10.042.

    Article  Google Scholar 

  • Oliveira, L. C. A., Pereira, E., Guimaraes, I. R., Vallone, A., Pereira, A., Mesquita, J. P., & Sapag, K. (2009). Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. Journal of Hazardous Materials, 165, 87–94. doi:10.1016/j.jhazmat.2008.09.064.

    Article  CAS  Google Scholar 

  • Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 74(1), 69–80. doi:10.1016/S0960-8524(99)00142-X.

    Article  CAS  Google Scholar 

  • Payá, J., Monzó, J., Borrachero, M. V., Díaz-Pinzón, L., & Ordóñez, L. M. (2002). Sugar-cane bagasse ash (SCBA): studies on its properties for reusing in concrete production. Journal of Chemical Technology & Biotechnology, 77(3), 321–325. doi:10.1002/jctb.549.

    Article  Google Scholar 

  • Pereira, E., Oliveira, L. C. A., Vallone, A., Sapag, K., & Pereira, M. (2008a). Preparação de carvão ativado em baixas temperaturas de carbonização a partir de rejeitos de café: utilização de FeCl3 como agente ativante. Quimica Nova, 31(6), 1296–1300. doi:10.1590/S0100-40422008000600004.

    Article  CAS  Google Scholar 

  • Pezoti Jr., O., Cazetta, A. L., Souza, I. P. A. F., Bedin, K. C., Martins, A. C., Silva, T. L., & Almeida, V. C. (2014). Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.) Journal of Industrial and Engineering Chemistry, 20, 4401–4407. doi:10.1016/j.jiec.2014.02.007.

    Article  CAS  Google Scholar 

  • Pinto, M. V. d. S., da Silva, D. L., & Saraiva, A. C. F. (2012). Obtenção e caracterização de carvão ativado de caroço de buriti ( Mauritia flexuosa L . f .) para a avaliação do processo de adsorção de cobre ( II ). Acta Amazonica, 42(4), 75–82.

    Google Scholar 

  • Ramos, P. H., Guerreiro, M. C., De Resende, E. C., & Gonçalves, M. (2009a). Produção e caracterização de carvão ativado produzido a partir do defeito preto, verde, ardido (pva) do café. Quimica Nova, 32(5), 1139–1143. doi:10.1590/S0100-40422009000500011.

    Article  CAS  Google Scholar 

  • Rozada, F., Otero, M., Moran, A., & García, A. I. (2005). Activated carbons from sewage sludge and discarded tyres: production and optimization. Journal of Hazardous Materials, B124, 181–191.

    Article  Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2006). Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. Journal of Hazardous Materials, 134(1–3), 257–267. doi:10.1016/j.jhazmat.2005.11.052.

    Article  CAS  Google Scholar 

  • Stavropoulos, G. G., & Zabaniotou, A. A. (2005). Production and characterization of activated carbons from olive-seed waste residue. Microporous and Mesoporous Materials, 82(1–2), 79–85. doi:10.1016/j.micromeso.2005.03.009.

    Article  CAS  Google Scholar 

  • Tao, H. C., Zhang, H. R., Li, J. B., & Ding, W. Y. (2015). Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresource Technology, 192, 611–617. doi:10.1016/j.biortech.2015.06.006.

    Article  CAS  Google Scholar 

  • Teixeira, S. R., de Souza, A. E., Santos, G. T. d. A., Peña, A. F. V., & Miguel, Á. G. (2008). Sugarcane bagasse ash as a potential quartz replacement in red ceramic. Journal of the American Ceramic Society, 91(6), 1883–1887. doi:10.1111/j.1551-2916.2007.02212.x.

    Article  CAS  Google Scholar 

  • Tsoncheva, T., Mileva, A., Paneva, D., Kovacheva, D., Spassova, I., Nihtianova, D., Markov, P., Petrov, N., & Mitov, I. (2016). Zinc ferrites hosted in activated carbon from waste precursors as catalysts in methanol decomposition. Microporous and Mesoporous Materials, 229, 59–67. doi:10.1016/j.micromeso.2016.04.008.

    Article  CAS  Google Scholar 

  • Tsyntsarski, B., Stoycheva, I., Tsoncheva, T., Genova, I., Dimitrov, M., Petrova, B., et al. (2015). Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Processing Technology, 137, 139–147. doi:10.1016/j.fuproc.2015.04.016.

    Article  CAS  Google Scholar 

  • UNICA. (2014). Quebra agrícola se acentua e previsão de moagem diminui para 546 milhões de toneladas na região Centro-Sul. São Paulo: União das Indústrias de cana-de-açúcar http://www.unica.com.br/noticia/22523888920311080579/quebra-agricola-se-acentua-e-previsao-de-moagem-diminui-para-546-milhoes-de-toneladas-na-regiao-centro-sul/. Accessed 7 December 2016.

    Google Scholar 

  • UNICA. (2016a). Safra encerrada no centro-sul atinge 617,65 milhões de toneladas. São Paulo: União das Indústrias de cana-de-açúcar http://unica.com.br/noticia/41597945920320868796/safra-encerrada-no-centro-sul-atinge-617-por-cento2C65-milhoes-de-toneladas/. Accessed 7 December 2016.

    Google Scholar 

  • UNICA. (2016b). Moagem da safra 2016/2017 do centro-sul deve atingir entre 605 e 630 milhões de toneladas de cana. São Paulo: União das Indústrias de cana-de-açúcar http://unica.com.br/noticia/29063662920326811142/moagem-da-safra-2016-por-cento2F2017-do-centro-sul-deve-atingir-entre-605-e-630-milhoes-de-toneladas-de-cana/. Accessed 7 December 2016.

    Google Scholar 

  • Vasanth Kumar, K., & Sivanesan, S. (2006). Equilibrium data, isotherm parameters and process design for partial and complete isotherm of methylene blue onto activated carbon. Journal of Hazardous Materials, 134(1–3), 237–244. doi:10.1016/j.jhazmat.2005.11.002.

    Article  CAS  Google Scholar 

  • Wang, X., & Qin, Y. (2005). Equilibrium sorption isotherms for of Cu2+ on rice bran. Process Biochemistry, 40(2), 677–680. doi:10.1016/j.procbio.2004.01.043.

    Article  CAS  Google Scholar 

  • Xie, Z., Guan, W., Ji, F., Song, Z., & Zhao, Y. (2014). Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology. Journal of Chemistry, 2014(6), 1–9. doi:10.1155/2014/491912.

    Google Scholar 

  • Xing, Y., Liu, D., & Zhang, L. P. (2010). Enhanced adsorption of methylene blue by EDTAD-modified sugarcane bagasse and photocatalytic regeneration of the adsorbent. Desalination, 259, 187–191. doi:10.1016/j.desal.2010.04.008.

    Article  CAS  Google Scholar 

  • Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renewable and Sustainable Energy Reviews, 46, 218–235. doi:10.1016/j.rser.2015.02.051.

    Article  CAS  Google Scholar 

  • Yorgun, S., Vural, N., & Demiral, H. (2009). Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials, 122(1–3), 189–194. doi:10.1016/j.micromeso.2009.02.032.

    Article  CAS  Google Scholar 

  • Zaini, M. A. A., Zakaria, M., Setapar, S. H. M., & Yunus, M. A. C. (2013). Sludge-adsorbents from palm oil mill effluent for methylene blue removal. Journal of Environmental Chemical Engineering, 1, 1091–1098. doi:10.1016/j.jece.2013.08.026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support and grants provided, the Escola de Engenharia de Lorena from Universidade de São Paulo (EEL-USP), for the scanning electron microscopy analyses and the Laboratório de Cristalografia da Universidade Federal de Alfenas-MG, for the XDR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Magalhães.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giusto, L.A.R., Pissetti, F.L., Castro, T.S. et al. Preparation of Activated Carbon from Sugarcane Bagasse Soot and Methylene Blue Adsorption. Water Air Soil Pollut 228, 249 (2017). https://doi.org/10.1007/s11270-017-3422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3422-5

Keywords

Navigation