Skip to main content
Log in

Magnetic Fenton and Photo-Fenton-Like Catalysts Supported on Carbon Nanotubes for Wastewater Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) synthesized by the catalytic decomposition of methane were used as the support for magnetic Fenton and photo-Fenton catalysts to treat real wastewater contaminated with dyes and Escherichia coli. The effect of methane flow, the use of diluent (N2), and the reaction time in the production of CNTs were studied. An increase in the production of CNTs with increased CH4 flow and a decrease over the reaction time were recorded. Catalysts with 1, 3, and 5% w/w Fe were obtained and characterized by several spectroscopic and microscopic techniques. Multi-walled CNTs and bamboo-like carbon nanofibers with average diameters of 44.0 nm and average lengths of 237.0 nm were obtained. The catalysts had Fe x O y (oxide species) crystallite sizes between 10 and 18 nm and soft ferromagnetic properties. A factorial 33 design was used for selecting variables for the catalytic tests, wherein the concentration of H2O2, the catalyst mass, and the percentage of iron were evaluated. Subsequently, kinetic experiments were performed. The photo-Fenton process (5% Fe, 200 mg, and 0.4 M H2O2) showed the best results in terms of total organic carbon (TOC) abatement, discoloration, and E. coli inactivation without leaching of Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel Salam, M., Gabal, M. A., & Obaid, A. Y. (2012). Preparation and characterization of magnetic multi-walled carbon nanotubes/ferrite nanocomposite and its application for the removal of aniline from aqueous solution. Synthetic Metals, 161(23), 2651–2658.

    Article  Google Scholar 

  • Abraham, J., Abreu, P., Aglietta, M., Aguirre, C., Allard, D., Allekotte, I., et al. (2007). Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science, 318(5852), 938–943.

    Article  CAS  Google Scholar 

  • Ajayan, P., Ebbesen, T., Ichihashi, T., Iijima, S., Tanigaki, K., & Hiura, H. (1993). Opening carbon nanotubes with oxygen and implications for filling. Nature, 362, 522–525.

    Article  CAS  Google Scholar 

  • Ali, S. D., Hussain, S. T., & Gilani, S. R. (2013). Synthesis, characterization and magnetic properties of carbon nanotubes decorated with magnetic MII Fe2O4 nanoparticles. Applied Surface Science, 271, 118–124.

    Article  CAS  Google Scholar 

  • Arora, N., & Sharma, N. N. (2014). Arc discharge synthesis of carbon nanotubes: comprehensive review. Diamond and Related Materials, 50, 135–150.

    Article  CAS  Google Scholar 

  • Ayodele, O. B., & Hameed, B. H. (2013). Development of kaolinite supported ferric oxalate heterogeneous catalyst for degradation of 4-nitrophenol in photo-Fenton process. Applied Clay Science, 83–84, 171–181.

    Article  Google Scholar 

  • Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572.

    Article  CAS  Google Scholar 

  • Belin, T., & Epron, F. (2005). Characterization methods of carbon nanotubes: a review. Materials Science and Engineering: B, 119(2), 105–118.

    Article  Google Scholar 

  • Cleveland, V., Bingham, J. P., & Kan, E. (2014). Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe3O4. Separation and Purification Technology, 133, 388–395.

    Article  CAS  Google Scholar 

  • Cunha, A. F., Órfão, J. J. M., & Figueiredo, J. L. (2009). Methane decomposition on Ni–Cu alloyed Raney-type catalysts. International Journal of Hydrogen Energy, 34(11), 4763–4772.

    Article  CAS  Google Scholar 

  • Daza, C. E., Gallego, J., Moreno, J. A., Mondragón, F., Moreno, S., & Molina, R. (2008). CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides. Catalysis Today, 133–135(0), 357–366.

    Article  Google Scholar 

  • Daza, C. E., Kiennemann, A., Moreno, S., & Molina, R. (2009). Dry reforming of methane using Ni–Ce catalysts supported on a modified mineral clay. Applied Catalysis A: General, 364(1–2), 65–74.

    Article  CAS  Google Scholar 

  • Daza, C. E., Gallego, J., Mondragón, F., Moreno, S., & Molina, R. (2010a). High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane. Fuel, 89(3), 592–603.

    Article  CAS  Google Scholar 

  • Daza, C. E., Moreno, S., & Molina, R. (2010b). Ce-incorporation in mixed oxides obtained by the self-combustion method for the preparation of high performance catalysts for the CO2 reforming of methane. Catalysis Communications, 12(3), 173–179.

    Article  CAS  Google Scholar 

  • Daza, C. E., Moreno, S., & Molina, R. (2011). Co-precipitated Ni–Mg–Al catalysts containing Ce for CO2 reforming of methane. International Journal of Hydrogen Energy, 36(6), 3886–3894.

    Article  CAS  Google Scholar 

  • Demir, A., Baykal, A., Sözeri, H., & Topkaya, R. (2014). Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes. Synthetic Metals, 187, 75–80.

    Article  CAS  Google Scholar 

  • Deng, J., Wen, X., & Li, J. (2014). Degradation of methylene blue by heterogeneous Fenton-like reaction using Fe3O4/carbon nanotube composites. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 34(6), 1436–1442.

    CAS  Google Scholar 

  • Djaidja, A., Libs, S., Kiennemann, A., & Barama, A. (2006). Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts. Catalysis Today, 113(3), 194–200.

    Article  CAS  Google Scholar 

  • Donato, M., Galvagno, S., Messina, G., Milone, C., Pistone, A., & Santangelo, S. (2007). Optimisation of gas mixture composition for the preparation of high quality MWCNT by catalytically assisted CVD. Diamond and Related Materials, 16(4), 1095–1100.

    Article  CAS  Google Scholar 

  • Duan, X., Sun, H., Wang, Y., Kang, J., & Wang, S. (2015). N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catalysis, 5(2), 553-559.

  • Fan, X. J., & Li, X. (2012). Preparation and magnetic property of multiwalled carbon nanotubes decorated by Fe3O4 nanoparticles. New Carbon Materials, 27(2), 111–116.

    Article  CAS  Google Scholar 

  • Gallego, G. S., Batiot-Dupeyrat, C., Barrault, J., Florez, E., & Mondragon, F. (2008). Dry reforming of methane over LaNi1−yByO3±δ (B=Mg, Co) perovskites used as catalyst precursor. Applied Catalysis A: General, 334(1), 251–258.

    Article  CAS  Google Scholar 

  • Gallego, J., Gallego, G. S., Daza, C., Molina, R., Barrault, J., Batiot-Dupeyat, C., et al. (2013). Synthesis of MWCNTs and hydrogen from ethanol catalytic decomposition over a Ni/La2O3 catalyst produced by the reduction of LaNiO3. Dyna, 178, 79.

    Google Scholar 

  • Herrero-Latorre, C., Álvarez-Méndez, J., Barciela-García, J., García-Martín, S., & Peña-Crecente, R. M. (2015). Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: a review. Analytica Chimica Acta, 853, 77–94.

    Article  CAS  Google Scholar 

  • Kaneko, T., Fujiwara, Y., Sato, H., Kato, T., Maeda, K., Iwata, S., et al. (2013). Magnetic property of FePt nanoparticles encaged in carbon nanotubes. Vacuum, 87, 187–190.

    Article  CAS  Google Scholar 

  • Karale, R. S., Manu, B., & Shrihari, S. (2014). Fenton and photo-Fenton oxidation processes for degradation of 3-aminopyridine from water. APCBEE Procedia, 9, 25–29.

    Article  CAS  Google Scholar 

  • Koós, A. A., Dowling, M., Jurkschat, K., Crossley, A., & Grobert, N. (2009). Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition. Carbon, 47(1), 30–37.

    Article  Google Scholar 

  • Kukovitskii, E., Chernozatonskii, L., L’vov, S., & Mel’nik, N. (1997). Carbon nanotubes of polyethylene. Chemical Physics Letters, 266(3), 323–328.

    Article  CAS  Google Scholar 

  • Liao, Q., Sun, J., & Gao, L. (2009). Degradation of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe2O3 catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345(1–3), 95–100.

    Article  CAS  Google Scholar 

  • Liu, W.-W., Chai, S.-P., Mohamed, A. R., & Hashim, U. (2014). Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. Journal of Industrial and Engineering Chemistry, 20(4), 1171–1185.

    Article  CAS  Google Scholar 

  • Lu, A. H., Salabas, E. E. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), 1222–1244.

    Article  CAS  Google Scholar 

  • Lua, A. C., & Wang, H. Y. (2014). Hydrogen production by catalytic decomposition of methane over Ni-Cu-Co alloy particles. Applied Catalysis B: Environmental, 156–157, 84–93.

    Article  Google Scholar 

  • Lytkina, A. A., Zhilyaeva, N. A., Ermilova, M. M., Orekhova, N. V., & Yaroslavtsev, A. B. (2015). Influence of the support structure and composition of Ni–Cu-based catalysts on hydrogen production by methanol steam reforming. International Journal of Hydrogen Energy, 40(31), 9677–9684.

    Article  CAS  Google Scholar 

  • Martin-Gullon, I., Vera, J., Conesa, J. A., González, J. L., & Merino, C. (2006). Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 44(8), 1572–1580.

    Article  CAS  Google Scholar 

  • Misra, A., Tyagi, P. K., Singh, M. K., & Misra, D. (2006). FTIR studies of nitrogen doped carbon nanotubes. Diamond and Related Materials, 15(2), 385–388.

    Article  CAS  Google Scholar 

  • Moncayo-Lasso, A., Sanabria, J., Pulgarin, C., & Benítez, N. (2009). Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water. Chemosphere, 77(2), 296–300.

    Article  CAS  Google Scholar 

  • Munoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2015). Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—a review. Applied Catalysis B: Environmental, 176–177, 249–265.

    Article  Google Scholar 

  • Nisticò, R., Franzoso, F., Cesano, F., Scarano, D., Magnacca, G., Parolo, M. E., & Carlos, L. (2017). Chitosan-derived iron oxide systems for magnetically guided and efficient water purification processes from polycyclic aromatic hydrocarbons. ACS Sustainable Chemistry & Engineering, 5(1), 793–801.

    Article  Google Scholar 

  • Ohta, K., Nishizawa, T., Nishiguchi, T., Shimizu, R., Hattori, Y., Inoue, S., et al. (2014). Synthesis of carbon nanotubes by microwave heating: influence of diameter of catalytic Ni nanoparticles on diameter of CNTs. Journal of Materials Chemistry A, 2(8), 2773–2780.

    Article  CAS  Google Scholar 

  • Ortega-Gómez, E., Esteban García, B., Ballesteros Martín, M. M., Fernández Ibáñez, P., & Sánchez Pérez, J. A. (2014). Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH. Water Research, 63, 316–324.

    Article  Google Scholar 

  • Pistone, A., Iannazzo, D., Fazio, M., Celegato, F., Barrera, G., Tiberto, P., et al. (2014). Synthesis and magnetic properties of multiwalled carbon nanotubes decorated with magnetite nanoparticles. Physica B: Condensed Matter, 435, 88–91.

    Article  CAS  Google Scholar 

  • Punzi, M., Anbalagan, A., Aragão Börner, R., Svensson, B.-M., Jonstrup, M., & Mattiasson, B. (2015). Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure. Chemical Engineering Journal, 270, 290–299.

    Article  CAS  Google Scholar 

  • Qu, S., Huang, F., Yu, S., Chen, G., & Kong, J. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. Journal of Hazardous Materials, 160(2), 643–647.

    Article  CAS  Google Scholar 

  • Rahim Pouran, S., Abdul Raman, A. A., & Wan Daud, W. M. A. (2014). Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64, 24–35.

    Article  CAS  Google Scholar 

  • Rahim Pouran, S., Abdul Aziz, A. R., & Wan Daud, W. M. A. (2015). Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. Journal of Industrial and Engineering Chemistry, 21, 53–69.

    Article  CAS  Google Scholar 

  • Rakov, E. G. (2007). Preparation of thin carbon nanotubes by catalytic pyrolysis on a support. Russian Chemical Reviews, 76(1), 1-22.

  • Ramirez, J. H, Vicente, M. A., & Madeira, L. M. (2010). Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Applied Catalysis B: Environmental, 98(1–2), 10-26.

  • Reich, S., Maultzsch, J., Thomsen, C., & Ordejon, P. (2002). Tight-binding description of graphene. Physical Review B, 66(3), 035412(1)–035412(5).

  • Rincón, A.-G., & Pulgarin, C. (2006). Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Applied Catalysis B: Environmental, 63(3–4), 222–231.

    Article  Google Scholar 

  • Rodríguez, A., Ovejero, G., Sotelo, J. L., Mestanza, M., & García, J. (2010). Heterogeneous fenton catalyst supports screening for mono azo dye degradation in contaminated wastewaters. Industrial and Engineering Chemistry Research, 49(2), 498–505.

    Article  Google Scholar 

  • Salam, M. A., El-Shishtawy, R. M., & Obaid, A. Y. (2014). Synthesis of magnetic multi-walled carbon nanotubes/magnetite/chitin magnetic nanocomposite for the removal of Rose Bengal from real and model solution. Journal of Industrial and Engineering Chemistry, 20(5), 3559–3567.

    Article  CAS  Google Scholar 

  • Seo, J., Lee, H. J., Lee, H., Kim, H. E., Lee, J. Y., Kim, H. S., et al. (2015). Enhanced production of reactive oxidants by Fenton-like reactions in the presence of carbon materials. Chemical Engineering Journal, 273, 502-508.

  • Shen, Y., & Lua, A. C. (2015). Synthesis of Ni and Ni–Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane. Applied Catalysis B: Environmental, 164, 61–69.

    Article  CAS  Google Scholar 

  • Shi, T. N., Xu, H. Y., & Chang, H. Z. (2014). UV-Fenton discoloration of methyl orange using Fe3O4/MWCNTs as heterogeneous catalyst obtained by an in-situ strategy. Applied Mechanics and Materials, 618, 208–214.

    Article  Google Scholar 

  • Sierra Gallego, G., Barrault, J., Batiot-Dupeyrat, C., & Mondragón, F. (2010). Production of hydrogen and MWCNTs by methane decomposition over catalysts originated from LaNiO3 perovskite. Catalysis Today, 149(3–4), 365–371.

    Article  CAS  Google Scholar 

  • Sivakumar, V., Mohamed, A. R., Abdullah, A. Z., & Chai, S.-P. (2010). Role of reaction and factors of carbon nanotubes growth in chemical vapour decomposition process using methane: a highlight. Journal of Nanomaterials, 2010, 11.

    Google Scholar 

  • Soon, A. N., & Hameed, B. H. (2011). Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination, 269(1–3), 1–16.

    Article  CAS  Google Scholar 

  • Sutradhar, S., Das, S., Roychowdhury, A., Das, D., & Chakrabarti, P. K. (2015). Magnetic property, Mössbauer spectroscopy and microwave reflection loss of maghemite nanoparticles (γ-Fe2O3) encapsulated in carbon nanotubes. Materials Science and Engineering: B, 196, 44–52.

    Article  CAS  Google Scholar 

  • Tan, P., Zhang, S. L., Yue, K. T., Huang, F., Shi, Z., Zhou, X., et al. (1997). Comparative Raman study of carbon nanotubes prepared by DC arc discharge and catalytic methods. Journal of Raman Spectroscopy, 28(5), 369–372.

    Article  CAS  Google Scholar 

  • Tanaka, K., Padermpole, K., & Hisanaga, T. (2000). Photocatalytic degradation of commercial azo dyes. Water Research, 34(1), 327–333.

    Article  CAS  Google Scholar 

  • Tran, K. Y., Heinrichs, B., Colomer, J.-F., Pirard, J.-P., & Lambert, S. (2007). Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe–Co/Al2O3 sol–gel catalysts. Applied Catalysis A: General, 318(0), 63–69.

    Article  CAS  Google Scholar 

  • Variava, M. F., Church, T. L., & Harris, A. T. (2012). Magnetically recoverable FexOy-MWNT Fenton’s catalysts that show enhanced activity at neutral pH. Applied Catalysis B: Environmental, 123-124, 200–207.

    Article  CAS  Google Scholar 

  • Wang, H. Y., & Lua, A. C. (2015). Methane decomposition using Ni–Cu alloy nano-particle catalysts and catalyst deactivation studies. Chemical Engineering Journal, 262, 1077–1089.

    Article  CAS  Google Scholar 

  • Wang, J., Liu, Z., & Cai, R. (2008). A new role for Fe3+ in TiO2 hydrosol: accelerated photodegradation of dyes under visible light. Environmental Science & Technology, 42(15), 5759–5764.

    Article  CAS  Google Scholar 

  • Wang, H., Jiang, H., Wang, S., Shi, W., He, J., Liu, H., et al. (2014). Fe3O4-MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Advances, 4(86), 45809–45815.

    Article  CAS  Google Scholar 

  • Yao, Y., Chen, H., Qin, J., Wu, G., Lian, C., Zhang, J., & Wang, S. (2016). Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction. Water Research, 101, 281–291.

    Article  CAS  Google Scholar 

  • Yu, F., Chen, J., Chen, L., Huai, J., Gong, W., Yuan, Z., et al. (2012). Magnetic carbon nanotubes synthesis by Fenton’s reagent method and their potential application for removal of azo dye from aqueous solution. Journal of Colloid and Interface Science, 378(1), 175–183.

    Article  CAS  Google Scholar 

  • Yu, L., Yang, X., Ye, Y., & Wang, D. (2015). Efficient removal of atrazine in water with a Fe3O4/MWCNTs nanocomposite as a heterogeneous Fenton-like catalyst. RSC Advances, 5(57), 46059–46066.

    Article  CAS  Google Scholar 

  • Zhao, Y., Yang, X., Tian, J., Wang, F., & Zhan, L. (2010). Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. International Journal of Hydrogen Energy, 35(8), 3249–3257.

    Article  CAS  Google Scholar 

  • Zheng, B., Li, Y., & Liu, J. (2002). CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst. Applied Physics A, 74(3), 345–348.

    Article  CAS  Google Scholar 

  • Zhu, H., Fu, Y., Jiang, R., Yao, J., Liu, L., Chen, Y., et al. (2013). Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution. Applied Surface Science, 285(B), 865–873.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. Daza appreciates the funding for the project DIB code 27355 from Universidad Nacional de Colombia that permitted the complete characterization of the CNTs. The authors thank the Instituto de Ciencia de los Materiales de la Universidad de Sevilla for conducting TEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Daza.

Additional information

Research Highlights

• A parametric study of the synthesis of carbon nanotubes from methane was developed.

• Carbon nanotube production reached 4.54 ± 0.24 g(gcat h)−1 at 700 °C/2 h.

• Carbon nanotubes were the support for magnetic Fenton and photo-Fenton catalysts.

• Real wastewater contaminated with dyes and E. coli was treated.

• Results reached the total inactivation of E. coli without leaching of Fe ions.

Electronic supplementary material

ESM 1

(DOCX 15482 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, J.C., Pedroza, A.M. & Daza, C.E. Magnetic Fenton and Photo-Fenton-Like Catalysts Supported on Carbon Nanotubes for Wastewater Treatment. Water Air Soil Pollut 228, 246 (2017). https://doi.org/10.1007/s11270-017-3420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3420-7

Keywords

Navigation