Skip to main content
Log in

Acute Effects of Engineered Nanoparticles on the Growth and Gas Exchange of Zea mays L.—What are the Underlying Causes?

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The increasing use of nanoparticles (nps) in consumer and industrial applications raises concerns about their potential risks to ecosystems and biological systems. The nps can cause negative effects on bacteria, algae, and animals. However, only little is known about their effects on higher plants and the underlying mechanisms. Zea mays L. “Ayrro” was used to investigate effects of ZnO (30–40 nm), TiO2 (5–15 nm), and Ag (15 nm) nps, in comparison their corresponding bulk counterparts, on germination and early seedling growth. Treatment with nps affected growth positively (ZnO) or negatively (TiO2, Ag) in a dose-dependent manner. Effects of the corresponding bulk counterparts were either similar (TiO2) or opposite (ZnO), or even absent (Ag). To separate direct np effects (“nano effects”) from effects of ions released from nps, roots of 5-week-old plants were either treated with Ag nps or Ag+ ions with the same effective concentrations of dissolved free Ag+ ions, each with or without CaCl2 to precipitate free Ag+ ions as AgCl. Both Ag treatments reduced transpiration and assimilation rate. After addition of CaCl2, these negative effects disappeared, indicating that acute negative effects can be largely attributed to free Ag+ ions, rather than to specific nano effects. Further research with longer exposure times and different growth media could provide further insights in the analysis of np effects on plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelhamid, H. N. (2016). Nanoparticles as pharmaceutical agents. Mathews Journal of Anesthesia, 1(1), 003.

    Google Scholar 

  • Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974–3983.

    Article  CAS  Google Scholar 

  • Andersen C. P., King G., Plocher M., Storm M., Pokhrel L. R., Johnson M. G., Rygiewicz P. T. (2016). Germination and early plant development of ten plant species exposed to TiO2 and CeO2 nanoparticles. Environmental Toxicology and Chemistry. http://www.onlinelibrary.wiley.com/doi/10.1002/etc.3374/epdf.

  • Barrena, R., Casals, E., Colon, J., Font, X., Sanchez, A., & Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75(7), 850–857.

    Article  CAS  Google Scholar 

  • Burke, D. J., Pietrasiak, N., Situ, S. F., Abenojar, E. C., Porche, M., Kraj, P., Lakliang, Y., & Samia, A. C. S. (2015). Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. International Journal of Molecular Sciences, 16(10), 23630–23650.

    Article  CAS  Google Scholar 

  • Clement, L., Hurel, C., & Marmier, N. (2013). Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere, 90(3), 1083–1090.

    Article  CAS  Google Scholar 

  • Cox, A., Venkatachalam, P., Sahi, S., & Sharma, N. (2016). Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiology Biochemistry, 107, 147–163.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., & Anderson, A. J. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9), 1125–1129.

    Article  Google Scholar 

  • Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., & Anderson, A. J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science & Technology, 47(2), 1082–1090.

    Article  CAS  Google Scholar 

  • EU commission (2011). Commission recommendation on the definition of nanomaterial OJ L 275/38, 18 October 2011.

  • Federici, G., Shaw, B. J., & Handy, R. D. (2007). Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 84(4), 415–430.

    Article  CAS  Google Scholar 

  • Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146(1), 101–106.

    Article  CAS  Google Scholar 

  • Finnegan, M. P., Zhang, H., & Banfield, J. F. (2007). Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. The Journal of Physical Chemistry C, 111(5), 1962–1968.

    Article  CAS  Google Scholar 

  • Foltete, A.-S., Masfaraud, J.-F., Bigorgne, E., Nahmani, J., Chaurand, P., Botta, C., Labille, J., Rose, J., Ferard, J.-F., & Cotelle, S. (2011). Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental Pollution, 159(10), 2515–2522.

    Article  CAS  Google Scholar 

  • Gagne, F., Andre, C., Skirrow, R., Gelinas, M., Auclair, J., van Aggelen, G., Turcotte, P., & Gagnon, C. (2012). Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach. Chemosphere, 89(5), 615–622.

    Article  CAS  Google Scholar 

  • García-Gómez, C., Babin, M., Obrador, A., Álvarez, J. M., & Fernández, M. D. (2015). Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environmental Science and Pollution Research, 22(21), 16803–16813.

    Article  Google Scholar 

  • García-Sánchez, S., Bernales, I., & Cristobal, S. (2015). Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics, 16(1), 341.

    Article  Google Scholar 

  • Ghosh, M., Bandyopadhyay, M., & Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere, 81(10), 1253–1262.

    Article  CAS  Google Scholar 

  • Gottschalk, F., Sun, T., & Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environmental Pollution, 181, 287–300.

    Article  CAS  Google Scholar 

  • Hawthorne, J., Musante, C., Sinha, S. K., & White, J. C. (2012). Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. International Journal of Phytoremediation, 14(4), 429–442.

    Article  CAS  Google Scholar 

  • Hu, L., & Cui, Y. (2012). Energy and environmental nanotechnology in conductive paper and textiles. Energy & Environmental Science, 5(4), 6423–6435.

    Article  Google Scholar 

  • Jiang, H.-S., Qiu, X.-N., Li, G.-B., Li, W., & Yin, L.-Y. (2014). Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environmental Toxicology and Chemistry, 33(6), 1398–1405.

    Article  CAS  Google Scholar 

  • Judy J. D. (2013). Bioavailability of manufactured nanomaterials in terrestrial ecosystems. PhD Thesis. University of Kentucky. Lexington, Kentucky, USA.

  • Keller, A. A., & Lazareva, A. (2014). Predicted releases of engineered nanomaterials: from global to regional to local. Environmental Science & Technology Letters, 1(1), 65–70.

    Article  CAS  Google Scholar 

  • Klancnik, K., Drobne, D., Valant, J., & Dolenc Koce, J. (2011). Use of a modified allium test with nanoTiO2. Ecotoxicology and Environmental Safety, 74(1), 85–92.

    Article  CAS  Google Scholar 

  • Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology & Medicine, 51(10), 1872–1881.

    Article  CAS  Google Scholar 

  • Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.-M., Brisset, F., & Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. The Science of the Total Environment, 431, 197–208.

    Article  CAS  Google Scholar 

  • Lee, S., Chung, H., Kim, S., & Lee, I. (2013). The Genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air and Soil Pollution, 224(9), 1668–1678.

    Article  Google Scholar 

  • Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250.

    Article  CAS  Google Scholar 

  • Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), 5580–5585.

    Article  CAS  Google Scholar 

  • Lopez-Moreno, M. L., de La Rosa, G., Hernandez-Viezcas, J. A., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology, 44(19), 7315–7320.

    Article  CAS  Google Scholar 

  • Lowry, G. V., Hotze, E. M., Bernhardt, E. S., Dionysiou, D. D., Pedersen, J. A., Wiesner, M. R., & Xing, B. (2010). Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an Introduction to the special series. Journal of Environmental Quality, 39(6), 1867–1874.

    Article  CAS  Google Scholar 

  • Mahajan, P., Dhoke, S. K., & Khanna, A. S. (2011). Effect of nano-ZnO on growth of of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Applied Biological Research, 13(2), 54–61.

    Google Scholar 

  • Mangematin, V., & Walsh, S. (2012). The future of nanotechnologies. Technovation, 32(3–4), 157–160.

    Article  Google Scholar 

  • Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J., & Warheit, D. B. (2006). Safe handling of nanotechnology. Nature, 444(7117), 267–269.

    Article  CAS  Google Scholar 

  • Mihranyan, A., Ferraz, N., & Strømme, M. (2012). Current status and future prospects of nanotechnology in cosmetics. Progress in Materials Science, 57(5), 875–910.

    Article  CAS  Google Scholar 

  • Musante, C., & White, J. C. (2012). Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environmental Toxicology, 27(9), 510–517.

    Article  CAS  Google Scholar 

  • Mustafa, G., Sakata, K., Hossain, Z., & Komatsu, S. (2015). Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. Journal of Proteomics, 122, 100–118.

    Article  CAS  Google Scholar 

  • Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., & Behra, R. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science & Technology, 42(23), 8959–8964.

    Article  CAS  Google Scholar 

  • Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.

    Article  CAS  Google Scholar 

  • Niemietz, C. M., & Tyerman, S. D. (2002). New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Letters, 531(3), 443–447.

    Article  CAS  Google Scholar 

  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150(1), 5–22.

    Article  CAS  Google Scholar 

  • Oukarroum, A., Barhoumi, L., Pirastru, L., & Dewez, D. (2013). Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environmental Toxicology and Chemistry, 32(4), 902–907.

    Article  CAS  Google Scholar 

  • Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., & Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. The Analyst, 139(19), 4855–4861.

    Article  CAS  Google Scholar 

  • Parveen, A., & Rao, S. (2014). Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. Journal of Cluster Science, 26(3), 693–701.

    Article  Google Scholar 

  • Piccinno F., Gottschalk F., Seeger S., Nowack B. (2012). Industrial production quantities and uses often engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research (14): 1109–1120.

  • Poole, C. P., & Owens, F. J. (2003). Introduction to nanotechnology. Hoboken: J. Wiley.

    Google Scholar 

  • Roduner, E. (2006). Size matters: why nanomaterials are different. Chemical Society Reviews, 35(7), 583–592.

    Article  CAS  Google Scholar 

  • Ruffini Castiglione, M., Giorgetti, L., Geri, C., & Cremonini, R. (2011). The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research, 13(6), 2443–2449.

    Article  CAS  Google Scholar 

  • Savery, L. C., Viñas, R., Nagy, A. M., Pradeep, P., Merrill, S. J., Hood, A. M., Malghan, S. G., Goering, P. L., & Brown, R. P. (2017). Deriving a provisional tolerable intake for intravenous exposure to silver nanoparticles released from medical devices. Regulatory Toxicology and Pharmacology, 85, 108–118.

    Article  CAS  Google Scholar 

  • Schmidt, J., & Vogelsberger, W. (2009). Aqueous long-term solubility of titania nanoparticles and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. Journal of Solution Chemistry, 38(10), 1267–1282.

    Article  CAS  Google Scholar 

  • Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93(6), 906–915.

    Article  CAS  Google Scholar 

  • Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y., & Liu, Y. (2012). Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology, 6(3), 241–248.

    Article  CAS  Google Scholar 

  • Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A. F., Antonini, J., Evans, D. E., Ku, B. K., Ramsey, D., Maynard, A., Kagan, V. E., Castranova, V., & Baron, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 289(5), 698–708.

    Article  Google Scholar 

  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473–9479.

    Article  CAS  Google Scholar 

  • Stensberg, M. C., Wei, Q., McLamore, E. S., Porterfield, D. M., Wei, A., & Sepulveda, M. S. (2011). Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine, 6(5), 879–898.

    Article  CAS  Google Scholar 

  • Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Frontiers in Environmental Science, 4, 46.

    Article  Google Scholar 

  • Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., Pandey, R., Singh, V. P., Prasad, S. M., & Dubey, N. K. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110, 2–12.

    Article  CAS  Google Scholar 

  • Wang, J., Koo, Y., Alexander, A., Yang, Y., Westerho, S., Zhang, Q., Qingbo, Z., Jerald, L., Schnoor, Vicki, L., Colvin, Braam, J., & Alvarez, P. J. (2013). Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental Science & Technology, 47(10), 5442–5449.

    Article  CAS  Google Scholar 

  • Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C., & Wang, L. (2015). Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.) International Journal of Environmental Research and Public Health, 12(12), 15100–15109.

    Article  CAS  Google Scholar 

  • Yin, L., Cheng, Y., Espinasse, B., Colman, B. P., Auffan, M., Wiesner, M., Rose, J., Liu, J., & Bernhardt, E. S. (2011). More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environmental Science & Technology, 45(6), 2360–2367.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Agricultural Faculty of the University of Bonn. We thank the company RAS AG for providing silver nanoparticles for the experiments. We are also very grateful to Prof. Heiner E. Goldbach for his valuable and supportive advises during our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Eichert.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fellmann, S., Eichert, T. Acute Effects of Engineered Nanoparticles on the Growth and Gas Exchange of Zea mays L.—What are the Underlying Causes?. Water Air Soil Pollut 228, 176 (2017). https://doi.org/10.1007/s11270-017-3364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3364-y

Keywords

Navigation