Skip to main content
Log in

Aqueous Long-Term Solubility of Titania Nanoparticles and Titanium(IV) Hydrolysis in a Sodium Chloride System Studied by Adsorptive Stripping Voltammetry

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of industrially produced titanium dioxide nanoparticles has been studied in aqueous sodium chloride media in the pH range 1 to 13 at 25 °C by using adsorptive stripping voltammetry (AdSV). Kinetic dissolution curves have been obtained as well as long-term solubilities that provide an approximation of the equilibrium solubilities. The titania nanoparticles used in the dissolution experiments have been characterized by nitrogen sorption measurements, XRD and colloid titration. The equilibrium solubilities and titanium(IV) speciation and their dependences on pH have been modelled by assuming the formation of the mononuclear titanium hydroxo complexes [Ti(OH) n ](4−n)+ (n=2 to 5) to be the only titanium species present. The solubility product of titanium dioxide and equilibrium constants for titanium(IV) hydrolysis, calculated from the AdSV solubility data, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001). doi:10.1038/35104607

    Article  Google Scholar 

  2. Zhang, Z., Wang, C., Zakaria, R., Ying, J.Y.: Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102, 10871–10878 (1998). doi:10.1021/jp982948+

    Article  CAS  Google Scholar 

  3. Holleman, A.F., Wiberg, N.: Lehrbuch der Anorganischen Chemie/Holleman-Wiberg. de Gruyter, Berlin/New York (1995)

    Google Scholar 

  4. Borm, P., Klaessig, F.C., Landry, T.D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., Wood, S.: Research strategies for safety evaluation of nanomaterials, Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90, 23–32 (2006). doi:10.1093/toxsci/kfj084

    Article  CAS  Google Scholar 

  5. Oberdörster, G., Oberdörster, E., Oberdörster, J.: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Heal. Perspect. 113, 823–839 (2005)

    Article  CAS  Google Scholar 

  6. Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006). doi:10.1126/science.1114397

    Article  CAS  Google Scholar 

  7. Finnegan, M.P., Zhang, H., Banfield, J.F.: Anatase coarsening kinetics under hydrothermal conditions as a function of pH and temperature. Chem. Mater. 20, 3443–3449 (2008). doi:10.1021/cm071057o

    Article  CAS  Google Scholar 

  8. Jolivet, J., Cassaignon, S., Chanéac, C., Chiche, D., Tronc, E.: Design of oxide nanoparticles by aqueous chemistry. J. Sol-Gel Sci. Technol. 46, 299–305 (2008). doi:10.1007/s10971-007-1645-4

    Article  CAS  Google Scholar 

  9. Testino, A., Bellobono, I.R., Buscaglia, V., Canevali, C., D’Arienzo, M., Polizzi, S., Scotti, R., Morazzoni, F.: Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 129, 3564–3575 (2007). doi:10.1021/ja067050+

    Article  CAS  Google Scholar 

  10. Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., de Coss, R., Oskam, G.: Phase-pure TiO2 nanoparticles: anatase. Brookite and rutile. Nanotechnology 19, 145605 (2008) (10 pp.)

    Article  CAS  Google Scholar 

  11. Sugimoto, T., Zhou, X., Muramatsu, A.: Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 1. Solution chemistry of Ti(OH) (4−n)+ n complexes. J. Colloid Interface Sci. 252, 339–346 (2002). doi:10.1006/jcis.2002.8454

    Article  CAS  Google Scholar 

  12. Pottier, A., Cassaignon, S., Chanéac, C., Villain, F., Tronc, E., Jolivet, J.: Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J. Mater. Chem. 13, 877–882 (2003). doi:10.1039/b211271j

    Article  CAS  Google Scholar 

  13. Atashfaraz, M., Niassar, M.S., Ohara, S., Minami, K., Umetsu, M., Naka, T., Adschiri, T.: Effect of titanium dioxide solubility on the formation of BaTiO3 nanoparticles in supercritical water. Fluid Phase Equilib. 257, 233–237 (2007). doi:10.1016/j.fluid.2007.03.025

    Article  CAS  Google Scholar 

  14. Schmidt, J., Vogelsberger, W.: Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J. Phys. Chem. B 110, 3955–3963 (2006). doi:10.1021/jp055361l

    Article  CAS  Google Scholar 

  15. Vogelsberger, W., Schmidt, J., Roelofs, F.: Dissolution kinetics of oxidic nanoparticles: the observation of an unusual behaviour. Colloids Surf. A Physicochem. Eng. Asp. 324, 51–57 (2008). doi:10.1016/j.colsurfa.2008.03.032

    Article  CAS  Google Scholar 

  16. Roelofs, F., Vogelsberger, W.: Dissolution kinetics of nanodispersed γ-alumina in aqueous solution at different pH: unusual kinetic size effect and formation of a new phase. J. Colloid Interface Sci. 303, 450–459 (2006). doi:10.1016/j.jcis.2006.08.016

    Article  CAS  Google Scholar 

  17. Ziemniak, S.E., Jones, M.E., Combs, K.E.S.: Solubility behavior of titanium(IV) oxide in alkaline media at elevated temperatures. J. Solution Chem. 22, 601–623 (1993). doi:10.1007/BF00646781

    Article  CAS  Google Scholar 

  18. Knauss, K.G., Dibley, M.J., Bourcier, W.L., Shaw, H.F.: Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300 °C. Appl. Geochem. 16, 1115–1128 (2001). doi:10.1016/S0883-2927(00)00081-0

    Article  CAS  Google Scholar 

  19. Antignano, A., Manning, C.E.: Rutile solubility in H2O, H2O–SiO2, and H2O–NaAlSi3O8 fluids at 0.7–2.0 GPa and 700–1000 °C: implications for mobility of nominally insoluble elements. Chem. Geol. 255, 283–293 (2008). doi:10.1016/j.chemgeo.2008.07.001

    Article  CAS  Google Scholar 

  20. Audétat, A., Keppler, H.: Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth Planet. Sci. Lett. 232, 393–402 (2005). doi:10.1016/j.epsl.2005.01.028

    Article  CAS  Google Scholar 

  21. Schuiling, R.D., Vink, B.W.: Stability relations of some titanium-minerals (sphene, perovskite, rutile, anatase). Geochim. Cosmochim. Acta 31, 2399–2411 (1967). doi:10.1016/0016-7037(67)90011-7

    Article  CAS  Google Scholar 

  22. Leturcq, G., Advocat, T., Hart, K., Berger, G., Lacombe, J., Bonnetier, A.: Solubility study of Ti,Zr-based ceramics designed to immobilize long-lived radionuclides. Am. Mineral. 86, 871–880 (2001)

    CAS  Google Scholar 

  23. Liberti, A., Chiantella, V., Corigliano, F.: Mononuclear hydrolysis of titanium(IV) from partition equilibria. J. Inorg. Nucl. Chem. 25, 415–427 (1963). doi:10.1016/0022-1902(63)80192-X

    Article  CAS  Google Scholar 

  24. Nabivanets, B.I., Lukachina, V.V.: Hydroxy complexes of titanium(IV). Ukr. Khim. Zhur. 30, 1123–1128 (1964)

    CAS  Google Scholar 

  25. Kelsall, G.H., Robbins, D.J.: Thermodynamics of Ti–H2O–F(–Fe) Systems at 298 K. J. Electroanal. Chem. 283, 135–157 (1990). doi:10.1016/0022-0728(90)87385-W

    Article  CAS  Google Scholar 

  26. Comba, P., Merbach, A.: The titanyl question revisited. Inorg. Chem. 26, 1315–1323 (1987). doi:10.1021/ic00255a024

    Article  CAS  Google Scholar 

  27. Einaga, H.: Hydrolysis of titanium(IV) in aqueous (Na, H)Cl solution. Dalton Trans. 12, 1917–1919 (1979)

    Google Scholar 

  28. Yokoi, K., van den Berg, C.M.G.: Determination of titanium in sea water using catalytic cathodic stripping voltammetry. Anal. Chim. Acta 245, 167–176 (1991). doi:10.1016/S0003-2670(00)80217-2

    Article  CAS  Google Scholar 

  29. Schmidt, J.: Charakterisierung des Löseverhaltens oxidischer Nanopartikel (TiO2, ZrO2, SiO2) in wässrigen Systemen. Thesis, Friedrich-Schiller-Universität Jena, Jena, Germany (2008)

  30. Kraus, W., Nolze, G.: PowderCell for Windows Version 2.4. Bundesanstalt für Materialforschung und –prüfung, Berlin (2000)

  31. Barringer, E.A., Bowen, H.K.: High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir 1, 414–420 (1985). doi:10.1021/la00064a005

    Article  CAS  Google Scholar 

  32. Löbbus, M., Vogelsberger, W., Sonnefeld, J., Seidel, A.: Current considerations for the dissolution kinetics of solid oxides with silica. Langmuir 14, 4386–4396 (1998). doi:10.1021/la9712451

    Article  Google Scholar 

  33. Kosmulski, M.: The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid Interface Sci. 99, 255–264 (2002). doi:10.1016/S0001-8686(02)00080-5

    Article  CAS  Google Scholar 

  34. Hiemstra, T., Venema, P., Van Riemsdijk, W.H.: Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle. J. Colloid Interface Sci. 184, 680–692 (1996). doi:10.1006/jcis.1996.0666

    Article  CAS  Google Scholar 

  35. Vogelsberger, W.: Thermodynamic and kinetic considerations of the formation and the dissolution of nanoparticles of substances having low solubility. J. Phys. Chem. B 107, 9669–9676 (2003). doi:10.1021/jp030347z

    Article  CAS  Google Scholar 

  36. Lencka, M.M., Riman, R.E.: Thermodynamic modeling of hydrothermal synthesis of ceramic powders. Chem. Mater. 5, 61–70 (1993). doi:10.1021/cm00025a014

    Article  CAS  Google Scholar 

  37. Wolfram, S.: Das Mathematica-Buch. Addison-Wesley/Longman, Bonn (1997)

    Google Scholar 

  38. Grenthe, I., Wanner, H., Östhols, E.: TDB-2, Guidelines for the Extrapolation to Zero Ionic Strength. OECD Nuclear Energy Agency (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schmidt.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J., Vogelsberger, W. Aqueous Long-Term Solubility of Titania Nanoparticles and Titanium(IV) Hydrolysis in a Sodium Chloride System Studied by Adsorptive Stripping Voltammetry. J Solution Chem 38, 1267–1282 (2009). https://doi.org/10.1007/s10953-009-9445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9445-9

Keywords

Navigation