Skip to main content

Advertisement

Log in

Determination of Arsenic in Water Samples by Using a Green Hydrophobic-Hydrophilic Switchable Liquid-Solid Dispersive Microextraction Method

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A simple and green preconcentration method of hydrophobic to hydrophilic switchable liquid-solid dispersive microextraction (HSL-SDM) has been first time introduced as separation method for arsenic ion in real water samples. Multiwall carbon nanotube (MWCNT) was immobilized with diethylenetriamine (DETA) and then used as solid phase adsorbent for the determination of trace level of arsenic ion by HSL-SDM method prior to analysis by hydride generation atomic absorption spectrometry. Reversibly hydrophobic-hydrophilic switchable of functionalized MWCNT can occur due to the exposing of carbon dioxide (CO2) as anti-solvent trigger. The reversibly hydrophobic-hydrophilic switchable phenomena of immobilized MWCNT in the liquid-solid dispersive microextraction were checked by using FT-IR and SEM. The optimized analytical condition for arsenic ion analysis such as enrichment factor and limits of detection were obtained 83 and 3.05 ng L−1, respectively. Accuracy of the developed HSL-SDM method was confirmed by the analysis of certified reference materials. Our developed HSL-SDM method was successfully applicable for measurements of arsenic ions in real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed, M., Ahuja, S., Alauddin, M., Hug, S., Lloyd, J., Pfaff, A., Pichler, T., Saltikov, C., Stute, M., & Van Geen, A. (2006). Ensuring safe drinking water in Bangladesh. Science, 314, 1687–1688.

    Article  CAS  Google Scholar 

  • Ali, J., Kazi, T. G., Baig, J. A., Afridi, H. I., Arain, M. S., Brahman, K. D., & Panhwar, A. H. (2015). Arsenic in coal of the Thar coalfield, Pakistan, and its behavior during combustion. Environmental Science and Pollution Research, 22, 1–8.

  • Ali, J., Tuzen, M., Kazi, T. G., & Hazer, B. (2016). Inorganic arsenic speciation in water samples by miniaturized solid phase microextraction using a new polystyrene polydimethyl siloxane polymer in micropipette tip of syringe system. Talanta, 161, 450–458.

    Article  CAS  Google Scholar 

  • Anthemidis, A. N., & Martavaltzoglou, E. K. (2006). Determination of arsenic(III) by flow injection solid phase extraction coupled with on-line hydride generation atomic absorption spectrometry using a PTFE turnings-packed micro-column. Analytica Chimica Acta, 573, 413–418.

    Article  Google Scholar 

  • Araneda, C., Fonseca, C., Sapag, J., Basualto, C., Yazdani-Pedram, M., Kondo, K., Kamio, E., & Valenzuela, F. (2008). Removal of metal ions from aqueous solutions by sorption onto microcapsules prepared by copolymerization of ethylene glycol dimethacrylate with styrene. Separation and Purification Technology, 63, 517–523.

    Article  CAS  Google Scholar 

  • Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.-C., & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123, 247–260.

    Article  Google Scholar 

  • Behbahani, M., Najafi, M., Amini, M. M., Sadeghi, O., Bagheri, A., & Salarian, M. (2013). Dithizone-modified nanoporous fructose as a novel sorbent for solid-phase extraction of ultra-trace levels of heavy metals. Microchimica Acta, 180, 911–920.

    Article  CAS  Google Scholar 

  • Behpour, M., Ghoreishi, S. M., & Salehi, S. (2005). Solid phase extraction of arsenic by sorption on naphthalene-methyltrioctyl ammonium chloride and spectrophotometric determination. Acta Chimica Slovenica, 52, 323.

    CAS  Google Scholar 

  • Bradley, M. M., Siperko, L. M., & Porter, M. D. (2011). Colorimetric-solid phase extraction method for trace level determination of arsenite in water. Talanta, 86, 64–70.

    Article  CAS  Google Scholar 

  • Brammer, H., & Ravenscroft, P. (2009). Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environment International, 35, 647–654.

    Article  CAS  Google Scholar 

  • Chen, S., Jiang, Y., Wang, Z., Zhang, X., Dai, L., & Smet, M. (2008). Light-controlled single-walled carbon nanotube dispersions in aqueous solution. Langmuir, 24, 9233–9236.

    Article  CAS  Google Scholar 

  • Erdoğan, H., Yalçınkaya, O., & Turker, A. R. (2011). Determination of inorganic arsenic species by hydride generation atomic absorption spectrometry in water samples after preconcentration/separation on nano ZrO2/B2O3 by solid phase extraction. Desalination, 280, 391–396.

    Article  Google Scholar 

  • Etika, K. C., Jochum, F. D., Theato, P., & Grunlan, J. C. (2009). Temperature controlled dispersion of carbon nanotubes in water with pyrene-functionalized poly (N-cyclopropylacrylamide). Journal of the American Chemical Society, 131, 13598–13599.

    Article  CAS  Google Scholar 

  • Garcia-Salgado, S., & Quijano, M. A. (2014). Stability of toxic arsenic species and arsenosugars found in the dry alga Hijiki and its water extracts. Talanta, 128, 83–91.

    Article  CAS  Google Scholar 

  • Guo, Z., Feng, Y., Wang, Y., Wang, J., Wu, Y., & Zhang, Y. (2011). A novel smart polymer responsive to CO2. Chemical Communications, 47, 9348–9350.

    Article  CAS  Google Scholar 

  • Huang, C., Hu, B., & Jiang, Z. (2007). Simultaneous speciation of inorganic arsenic and antimony in natural waters by dimercaptosuccinic acid modified mesoporous titanium dioxide micro-column on-line separation and inductively coupled plasma optical emission spectrometry determination. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 454–460.

    Article  Google Scholar 

  • Ikem, A., Egiebor, N., & Nyavor, K. (2003). Trace elements in water, fish and sediments from Tuskegee Lake, Southeastern USA. Water, Air, & Soil Pollution, 149(1–4), 51–75.

    Article  CAS  Google Scholar 

  • Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., & Yodh, A. G. (2003). High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3, 269–273.

    Article  CAS  Google Scholar 

  • Jessop, P. G., Phan, L., Carrier, A., Robinson, S., Dürr, C. J., & Harjani, J. R. (2010). A solvent having switchable hydrophilicity. Green Chemistry, 12, 809–814.

    Article  CAS  Google Scholar 

  • Karimi, M. A., Mohadesi, A., Hatefi-Mehrjardi, A., Mohammadi, S. Z., Yarahmadi, J., & Khayrkhah, A. (2014). Separation/preconcentration and speciation analysis of trace amounts of arsenate and arsenite in water samples using modified magnetite nanoparticles and molybdenum blue method. Journal of Chemistry, 2014, 248065.

    Article  Google Scholar 

  • Karousis, N., Tagmatarchis, N., & Tasis, D. (2010). Current progress on the chemical modification of carbon nanotubes. Chemical Reviews, 110, 5366–5397.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Khan, S., Baig, J. A., Kolachi, N. F., Afridi, H. I., Kandhro, G. A., Kumar, S., & Shah, A. Q. (2009). Separation and preconcentration of aluminum in parenteral solutions and bottled mineral water using different analytical techniques. Journal of Hazardous Materials, 172, 780–785.

    Article  CAS  Google Scholar 

  • Kharissova, O. V., Kharisov, B. I., & de Casas Ortiz, E. G. (2013). Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Advances, 3, 24812–24852.

    Article  CAS  Google Scholar 

  • Kim, M. N., Yang, J.-K., Park, Y.-J., Lee, I.-Y., Min, K.-C., Jeon, C., & Lee, S.-M. (2016). Application of a novel electrochemical sensor containing organo-modified sericite for the detection of low-level arsenic. Environmental Science and Pollution Research, 23, 1044–1049.

    Article  CAS  Google Scholar 

  • Knöfel, C., Martin, C., Hornebecq, V., & Llewellyn, P. L. (2009). Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. Journal of Physical Chemistry C, 113, 21726–21734.

    Article  Google Scholar 

  • Kojima, M., Chiba, T., Niishima, J., Higashi, T., Fukuda, T., Nakajima, Y., Kurosu, S., Hanajiri, T., Ishii, K., & Maekawa, T. (2011). Dispersion of single-walled carbon nanotubes modified with poly-l-tyrosine in water. Nanoscale Research Letters, 6, 128.

    Article  Google Scholar 

  • Krupke, R., Hennrich, F., Löhneysen, H., & Kappes, M. M. (2003). Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 301, 344–347.

    Article  CAS  Google Scholar 

  • Larios, R., Fernández-Martínez, R., Álvarez, R., & Rucandio, I. (2012). Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites. Science of the Total Environment, 431, 426–435.

    Article  CAS  Google Scholar 

  • Liang, P., & Liu, R. (2007). Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination. Analytica Chimica Acta, 602, 32–36.

    Article  CAS  Google Scholar 

  • Liang, S., Chen, G., Peddle, J., & Zhao, Y. (2012). Reversible dispersion and releasing of single-walled carbon nanotubes by a stimuli-responsive TTFV-phenylacetylene polymer. Chemical Communications, 48, 3100–3102.

    Article  CAS  Google Scholar 

  • Liu, Y., Jessop, P. G., Cunningham, M., Eckert, C. A., & Liotta, C. L. (2006). Switchable surfactants. Science, 313, 958–960.

    Article  CAS  Google Scholar 

  • López-García, I., Rivas, R. E., & Hernández-Córdoba, M. (2011). Use of carbon nanotubes and electrothermal atomic absorption spectrometry for the speciation of very low amounts of arsenic and antimony in waters. Talanta, 86, 52–57.

    Article  Google Scholar 

  • Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J.-K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites. Part A, Applied Science and Manufacturing, 41, 1345–1367.

    Article  Google Scholar 

  • Majid, E., Hrapovic, S., Liu, Y., Male, K. B., & Luong, J. H. (2006). Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Analytical Chemistry, 78, 762–769.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Matarredona, O., Rhoads, H., Li, Z., Harwell, J. H., Balzano, L., & Resasco, D. E. (2003). Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. The Journal of Physical Chemistry B, 107, 13357–13367.

    Article  CAS  Google Scholar 

  • Matera, V., Le Hecho, I., Laboudigue, A., Thomas, P., Tellier, S., & Astruc, M. (2003). A methodological approach for the identification of arsenic bearing phases in polluted soils. Environmental Pollution, 126, 51–64.

    Article  CAS  Google Scholar 

  • McFarlane, J., Ridenour, W., Luo, H., Hunt, R., DePaoli, D., & Ren, R. (2005). Room temperature ionic liquids for separating organics from produced water. Separation Science and Technology, 40, 1245–1265.

    Article  CAS  Google Scholar 

  • Morin, G., & Calas, G. (2006). Arsenic in soils, mine tailings, and former industrial sites. Elements, 2, 97–101.

    Article  CAS  Google Scholar 

  • Mulugeta, M., Wibetoe, G., Engelsen, C. J., & Lund, W. (2010). Speciation analysis of As, Sb and Se in leachates of cementitious construction materials using selective solid phase extraction and ICP-MS. Journal of Analytical Atomic Spectrometry, 25, 169–177.

    Article  CAS  Google Scholar 

  • Nabid, M. R., Sedghi, R., Bagheri, A., Behbahani, M., Taghizadeh, M., Oskooie, H. A., & Heravi, M. M. (2012). Preparation and application of poly (2-amino thiophenol)/MWCNTs nanocomposite for adsorption and separation of cadmium and lead ions via solid phase extraction. Journal of Hazardous Materials, 203, 93–100.

    Article  Google Scholar 

  • O’Connell, M. J., Boul, P., Ericson, L. M., Huffman, C., Wang, Y., Haroz, E., Kuper, C., Tour, J., Ausman, K. D., & Smalley, R. E. (2001). Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 342, 265–271.

    Article  Google Scholar 

  • Premkumar, T., Mezzenga, R., & Geckeler, K. E. (2012). Carbon nanotubes in the liquid phase: addressing the issue of dispersion. Small, 8, 1299–1313.

    Article  CAS  Google Scholar 

  • Sengupta, M. K., Sawalha, M. F., Ohira, S.-I., Idowu, A. D., & Dasgupta, P. K. (2010). Green analyzer for the measurement of total arsenic in drinking water: electrochemical reduction of arsenate to arsine and gas phase chemiluminescence with ozone. Analytical Chemistry, 82, 3467–3473.

    Article  CAS  Google Scholar 

  • Shamsipur, M., Fattahi, N., Assadi, Y., Sadeghi, M., & Sharafi, K. (2014). Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid–liquid microextraction based on the solidification of floating organic drop. Talanta, 130, 26–32.

    Article  CAS  Google Scholar 

  • Shirkhanloo, H., Ghazaghi, M., Rashidi, A., & Vahid, A. (2017). Arsenic speciation based on amine-functionalized bimodal mesoporous silica nanoparticles by ultrasound assisted-dispersive solid-liquid multiple phase microextraction. Microchemical Journal, 130, 137–146.

    Article  CAS  Google Scholar 

  • Smedley, P., & Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Tuzen, M., Citak, D., Mendil, D., & Soylak, M. (2009). Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination. Talanta, 78, 52–56.

    Article  CAS  Google Scholar 

  • Tuzen, M., Saygi, K. O., Karaman, I., & Soylak, M. (2010). Selective speciation and determination of inorganic arsenic in water, food and biological samples. Food and Chemical Toxicology, 48, 41–46.

    Article  CAS  Google Scholar 

  • Uluozlu, O. D., Tuzen, M., Mendil, D., & Soylak, M. (2010). Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry. Food and Chemical Toxicology, 48, 1393–1398.

    Article  CAS  Google Scholar 

  • Wade, T. J., Pai, N., Eisenberg, J. N., & Colford, J. M., Jr. (2003). Do US Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environmental Health Perspectives, 111, 1102.

    Article  Google Scholar 

  • World Health Organization. (2007). Cancer control: knowledge into action: WHO guide for effective programmes. Geneva: World Health Organization.

    Google Scholar 

  • Wu, H., Wang, X., Liu, B., Liu, Y., Li, S., Lu, J., Tian, J., Zhao, W., & Yang, Z. (2011). Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column. Spectrochimica Acta Part B: Atomic Spectroscopy, 66, 74–80.

    Article  Google Scholar 

  • Xiong, C., He, M., & Hu, B. (2008). On-line separation and preconcentration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry. Talanta, 76, 772–779.

    Article  CAS  Google Scholar 

  • Yamada, T., Lukac, P. J., George, M., & Weiss, R. G. (2007). Reversible, room-temperature ionic liquids. Amidinium carbamates derived from amidines and aliphatic primary amines with carbon dioxide. Chemistry of Materials, 19, 967–969.

    Article  CAS  Google Scholar 

  • Yu, J., Le, Y., & Cheng, B. (2012). Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Advances, 2, 6784–6791.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jamshed Ali is grateful to the Scientific and Technological Research Council of Turkey (TUBITAK) for being awarded “2216 Research Fellowship Program for Foreign Citizens” and providing financial support. The author also would like to thank the Gaziosmanpasa University for providing excellent research laboratory facilities to carry out this research work. Dr. Mustafa Tuzen thanks the Turkish Academy of Sciences for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tuzen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, J., Tuzen, M. & Kazi, T.G. Determination of Arsenic in Water Samples by Using a Green Hydrophobic-Hydrophilic Switchable Liquid-Solid Dispersive Microextraction Method. Water Air Soil Pollut 228, 34 (2017). https://doi.org/10.1007/s11270-016-3211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3211-6

Keywords

Navigation