Skip to main content

Advertisement

Log in

Alteration in Growth, Leaf Gas Exchange, and Photosynthetic Pigments of Maize Plants Under Combined Cadmium and Arsenic Stress

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Increasing soil contamination by heavy metals is a major threat to environmental safety and global food security. The present study examined the influence of Cd and As stresses on morpho-physiological growth and yield of two contrasting maize cultivars (Run Nong 35 and Dong Dan 80). The Cd (100 μM) and As (200 μM) were applied individually as well as in combination (Cd + As) at 30 DAS. A control without Cd or As stress was also maintained for comparison. Application of Cd and As alone or in combination substantially reduced the growth (plant height, number of leaves per plant, leaf area, stem diameter, and shoot fresh and dry weight) and yield (number of ears per plant, number of kernels per ear, and 100-kernel weight) contributing traits in both maize cultivars particularly in Run Nong 35. Furthermore, pronounced reductions in gas exchange attributes (photosynthesis, stomatal conductance, transpiration rate, and intercellular CO2) and chlorophyll contents were observed in metal-stressed plants. The combined application of Cd and As was more detrimental for maize, and this treatment recorded the maximum reductions in morpho-physiological growth and yield of both cultivars. Cultivar variations were also apparent, and Dong Dan 80 performed better than Run Nong 35 for all the studied attributes. The higher tolerance of Dong Dan 80 was associated with better leaf gas exchange and maintenance of chlorophyll contents in this cultivar under Cd and As stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahsan, N., Lee, D. G., Kim, K. H., Alam, I., Lee, S. H., Lee, K. W., Lee, H., & Lee, B. H. (2010). Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere, 78, 224–231.

    Article  CAS  Google Scholar 

  • Aina, R., Labra, M., Fumagalli, P., Vannini, C., Marsoni, M., Cucchi, U., Bracale, M., Sgorbatia, S., & Citterio, S. (2007). Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environmental and Experimental Botany, 59, 381–392.

    Article  CAS  Google Scholar 

  • Andosch, A., Affenzeller, M. J., Lütz, C., & Lütz-Meindl, U. (2012). A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. Journal of Plant Physiology, 169, 1489–1500.

    Article  CAS  Google Scholar 

  • Anjum, S. A., Tanveer, M., Hussain, S., Bao, M., Wang, L. C., Khan, I., Ullah, E., Tung, S. A., Samad, R. A., & Shahzad, B. (2015). Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environmental Science and Pollution Research, 22(21), 17022–17030. doi:10.1007/s11356-015-4882-z.

    Article  CAS  Google Scholar 

  • Anjum, S. A., Ashraf, U., Khan, I., Tanveer, M., Saleem, M. F., & Wang, L. (2016a). Aluminum and chromium toxicity in maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant parts. Water, Air, and Soil Pollution, 227, 326. doi:10.1007/s11270-016-3013-x.

    Article  Google Scholar 

  • Anjum, S. A., Ashtraf, U., Khan, I., Tanveer, M., Ali, M., Hussain, I., & Wang, L. (2016b). Chromium and aluminum phytotoxicity in maize: morpho-physiological responses and metal uptake. Clean: Soil, Air, Water, 44, 1–10.

    Google Scholar 

  • Anjum, S. A., Tanveer, M., Hussain, S., et al. (2016c). Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environmental Science and Pollution Research, 23, 11864–11875.

    Article  CAS  Google Scholar 

  • Arnon, D. T. (1949). Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  • Ashraf, U., Kanu, A. S., Mo, Z. W., Hussain, S., Anjum, S. A., Khan, I., Abbas, R. N., & Tang, X. (2015). Lead toxicity in rice: effects, mechanisms and mitigation strategies—a mini review. Environmental Science and Pollution Research, 22, 18318–18332.

    Article  CAS  Google Scholar 

  • Ashraf, U., Salim, M. N., Sher, A., Sabir, S. R., Khan, A., Pan, S., & Tang, X. (2016). Maize growth, yield formation and water-nitrogen usage in response to varied irrigation and nitrogen supply under semi-arid climate. Turkish Journal of Field Crops, 21(1), 87–95. doi:10.17557/tjfc.93898.

    Article  Google Scholar 

  • ATSDR. (2003). Agency for Toxic Substances and Disease Registry of the U.S. Department of Health and Human Services. http://www.atsdr.cdc.gov/spl/.

  • Bankaji, I., Sleimi, N., López-Climent, M. F., Perez-Clemente, R. M., & Gomez-Cadenas, A. (2014). Effect of combined abiotic stresses on growth, trace element accumulation and phytohormone regulation in two halophytic species. Journal of Plant Growth Regulation, 33, 632–643.

    Article  CAS  Google Scholar 

  • Barceló, J., & Poschenrieder, C. H. (1990). Plant water relations as affected by heavy metals stress: a review. Journal of Plant Nutrition, 13, 1–37.

    Article  Google Scholar 

  • Bondada, B. R., & Ma, L. Q. (2003). Arsenic hyperaccumulation by Chinese brake fern (Pteris vittata L.). In S. Chandra & M. Srivastava (Eds.), Pteridology in the new millennium. NBRI Golden Jubilee Volume (pp. 397–427). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Burló, F., Guijarro, I., Carbonell-Barrachina, A. A., Valero, D., & Martínez-Sánchez, F. (1999). Arsenic species: effects on and accumulation by tomato plants. Journal of Agricultural and Food Chemistry, 47, 1247–1253.

    Article  Google Scholar 

  • Cao, X., Ma, L. Q., & Tu, C. (2004). Antioxidant responses to arsenic in the arsenic hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental Pollution, 128, 317–325.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina, A., Burlo-Carbonell, F., & MataixBeneyto, J. (1995). Arsenic uptake, distribution and accumulation in tomato plants: effect of arsenite on plant growth and yield. Journal of Plant Nutrition, 18, 1237–1250.

    Article  Google Scholar 

  • Carbonell-Barrachina, A. A., Aarabi, M. A., Delaune, R. D., Gambrell, R. P., & Patrick, J. W. H. (1998). Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Science of the Total Environment, 217, 189–199. doi:10.1016/S0048-9697(98)00195-8.

    Article  Google Scholar 

  • Carbonell-Barrachina, A. A., Burló, F., Valero, D., López, E., Martínez-Romero, D., & Martínez-Sánchez, F. (1999). Arsenic toxicity and accumulation in turnip as affected by arsenic chemical speciation. Journal of Agricultural Food Chemistry, 47, 2288–2294.

    Article  CAS  Google Scholar 

  • Chen, W., Chang, A. C., & Wu, L. (2007). Assessing long-term environmental risks of trace elements in phosphate fertilizers. Ecotoxicology and Environmental Safety, 67, 48–58.

    Article  CAS  Google Scholar 

  • Choudhury, B., Chowdhury, S., & Biswas, A. K. (2011). Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. Journal of Plant Interactions, 6(1), 15–24. doi:10.1080/17429140903487552.

    Article  CAS  Google Scholar 

  • Ci, X. K., Liu, H. L., Hao, Y. B., Zhang, J. W., Peng, L. I. U., & Dong, S. T. (2012). Arsenic distribution, species, and its effect on maize growth treated with arsenate. Journal of Integrative Agriculture, 11(3), 416–423.

    Article  CAS  Google Scholar 

  • Daud, M. K., Variath, M. T., Ali, S., Najeeb, U., Muhammad, J., Hayat, Y., Dawood, M., Khan, M. I., Zaffar, M., Sardar, A. C., Tong, X. H., & Zhu, S. (2009). Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative. Journal of Hazardous Materials, 168, 614–625.

    Article  CAS  Google Scholar 

  • Dobroviczká, T. E. R. É. Z. I. A., Piršelová, B. E. Á. T. A., Meszaros, P., Blehová, A. L. Ž. B. E. T. A., Libantova, J., Moravčiková, J. A. N. A., & Matušíková, I. L. D. I. K. Ó. (2013). Effects of cadmium and arsenic ions on content of photosynthetic pigments in the leaves of Glycine max (L.) Merrill. Pakistan Journal of Botany, 45(1), 105–110.

    Google Scholar 

  • Gale, F., Jewison, M., & Hansen, J. (2014). Prospects for China’s corn yield growth and imports. Washington DC: United States Department of Agriculture Economic Research Service.

    Google Scholar 

  • Gu, J. G., Zhou, Q. X., & Wang, X. (2003). Reused path of heavy metal pollution in soils and its research advance. Journal of Basic Science and Engineering, 11(2), 143–151.

    Google Scholar 

  • Gupta, D. K., Huang, H. G., Nicoloso, F. T., Schetinger, M. R., Farias, J. G., Li, T. Q., Razafindrabe, B. H. N., Aryal, N., & Inouhe, M. (2013). Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology, 9, 1403–1412.

    Article  Google Scholar 

  • Huang, D. F., Xi, L. L., Yang, L. N., Wang, Z. Q., & Yang, J. C. (2008). Comparison of agronomic and physiological traits of rice genotypes differing in cadmium tolerance. Acta Agronomica Sinica, 34, 809–817.

    Google Scholar 

  • Huang, C.J., G. Wei, Y.C. Jie, J.J Xu, S.A. Anjum, M. Tanveer, 2016. Effect of shade on growth, yield, gasexchange and chlorophyll contents in four ramie cultivars. Photosynthetica 54 (3): 390–395

  • Jin, Y. (2014). The first national soil survey: nearly 20% of farmland was contaminated. China: The Beijing News.

    Google Scholar 

  • Khan, N. A., Samiullah, S. S., & Nazar, R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science, 193, 435–444.

    Article  CAS  Google Scholar 

  • Knauer, K., Behra, R., & Hemond, H. (1999). Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient. Aquatic Toxicology, 46, 21–230.

    Article  Google Scholar 

  • Kummerová, M., Zezulka, Š., Kráľová, K., & Masarovičová, E. (2010). Effect of zinc and cadmium on physiological and production characteristics in Matricaria recutita. Biologia Plantarum, 54(2), 308–314.

    Article  Google Scholar 

  • Li, W. X., Chen, T. B., Huang, Z. C., Lei, M., & Liao, X. Y. (2006). Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere, 62, 803–809.

    Article  CAS  Google Scholar 

  • Li, C. X., Feng, S. L., Yun, S., Jiang, L. N., Lu, X. Y., & Hou, X. L. (2007). Effects of arsenic on seed germination and physiological activities of wheat seedlings. Journal of Environmental Sciences, 19(6), 725–732.

    Article  CAS  Google Scholar 

  • Liu, W. J., Zhu, Y. G., Smith, F. A., & Smith, S. E. (2004). Do iron plaque and genotypes affect arsenate uptake and translocation by rice. Journal of Experimental Botany, 55, 1707–1713.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, S., Shan, X., & Zhu, Y. G. (2005). Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere, 61(2), 293–301.

    Article  CAS  Google Scholar 

  • Mobin, M. ,& Khan, N. A. (2007). Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 164(5), 601–610.

  • Moldovan, L., & Moldovan, N. I. (2004). Oxygen free radicals and redox biology of organelles. Histochemistry and Cell Biology, 122, 395–412.

    Article  CAS  Google Scholar 

  • Nordberg, G. F., Jin, T., Hong, F., Zhang, A., Buchet, J. P., & Bernard, A. (2005). Biomarkers of cadmium and arsenic interactions. Toxicology and Applied Pharmacology, 206, 191–197.

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32, 539–548.

    Article  CAS  Google Scholar 

  • Pisani, T., Munzi, S., Paoli, L., Bačkor, M., & Loppi, S. (2011). Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr. Chemosphere, 82(7), 963–969.

    Article  CAS  Google Scholar 

  • Qadir, S., Qureshi, M. I., Javed, S., & Abdin, M. Z. (2004). Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Science, 167, 1171–1181.

    Article  CAS  Google Scholar 

  • Rodriguez-Serrano, M., Romero-Puertas, M. C., Pazmino, D. M., Testillano, P. S., Risueno, M. C., del Rio, L. A., & Sandalio, L. M. (2009). Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology, 150, 229–243.

    Article  CAS  Google Scholar 

  • Sánchez-Pardo, B., Cantero, C., & Zornoza, P. (2015). Alleviation of arsenic stress in cardoon plants via the supply of a low cadmium concentration. Environmental and Experimental Botany, 109, 229–234.

    Article  Google Scholar 

  • Sanità di Toppi, L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130.

    Article  Google Scholar 

  • Shahzad, B., Tanveer, M., Hassan, W., Shah, A. N., Anjum, S. A., Cheema, S. A., & Ali, I. (2016). Lithium toxicity in plants: reasons, mechanisms and remediation possibilities—a review. Plant Physiology and Biochemistry, 107, 104–115.

    Article  CAS  Google Scholar 

  • Shao, Y., Jiang, L. N., Li, W. C., Li, C. X., & Li, X. L. (2009). Toxic effects of As and Pb to wheat seedling and scanning electron microscopic observation on nether epidermis of leaves. Acta Agriculturae Boreali-Occidentalis Sinica, 18, 133–138 (in Chinese).

    Google Scholar 

  • Shi, G. R., & Cai, Q. S. (2008). Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica, 46, 627–630.

    Article  CAS  Google Scholar 

  • Šimonova, E., Henselova, M., Masarovicova, E., & Kohanova, J. (2007). Comparison of tolerance of Brassica juncea and Vigna radiata to cadmium. Biologia Plantarum, 51, 488–492.

    Article  Google Scholar 

  • Srivastava, S., Srivastava, A. K., Singh, B., Suprasanna, P., & D’souza, S. F. (2013). The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. Biologia Plantarum, 57(2), 385–389.

    Article  CAS  Google Scholar 

  • Srivastava, R. K., Pandey, P., Rajpoot, R., Rani, A., & Dubey, R. S. (2014). Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma, 251, 1047–1065.

    Article  CAS  Google Scholar 

  • Stoeva, N., & Bineva, T. (2003). Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulgarian Journal of Plant Physiology, 29(1–2), 87–95.

    Google Scholar 

  • Stoeva, N., Berova, M., & Zlatez, Z. (2004). Physiological response of maize to arsenic contamination. Biologia Plantarum, 47(3), 449–452.

    Article  Google Scholar 

  • Stoeva, N., Berova, M., & Zlatev, Z. (2005). Effect of arsenic on some physiological parameters in bean plants. Biologia Plantarum, 49, 293–296.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhou, Q., & Diao, C. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology, 99, 1103–1110.

    Article  CAS  Google Scholar 

  • White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105, 1073–1080.

    Article  CAS  Google Scholar 

  • Yang, Z. X., Liu, S. Q., Zheng, D. W., & Feng, S. D. (2006). Effects of cadmium, zinc and lead on soil enzyme activities. Journal of Environmental Sciences, 18(6), 1135–1141.

    Article  Google Scholar 

  • Zhang, J., & Duan, G. L. (2008). Genotypic difference in arsenic and cadmium accumulation by rice seedlings grown in hydroponics. Journal of Plant Nutrition, 31(12), 2168–2182. doi:10.1080/01904160802463130.

    Article  CAS  Google Scholar 

  • Zhu, Y., Yu, H., Wang, J., Fang, W., Yuan, J. G., & Yang, Z. Y. (2007). Heavy metal accumulation of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). Journal of Agricultural and Food Chemistry, 55, 1045–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was supported by the National Natural Science Foundation Project (31271673) and Special Fund for Agro-scientific Research in the Public Interest (No. 201503127), PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longchang Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Shakeel Ahmad Anjum and Mohsin Tanveer contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, S.A., Tanveer, M., Hussain, S. et al. Alteration in Growth, Leaf Gas Exchange, and Photosynthetic Pigments of Maize Plants Under Combined Cadmium and Arsenic Stress. Water Air Soil Pollut 228, 13 (2017). https://doi.org/10.1007/s11270-016-3187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3187-2

Keywords

Navigation