Skip to main content
Log in

Mercury Stoichiometric Relationships in a Subtropical Peatland

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Spatially variable areas, or hotspots, of elevated mercury (Hg) concentrations in soil, water, and wildlife occur throughout the Everglades wetland ecosystem. This study investigates the stoichiometric controls of Hg relative to soil, water, and biotic components. Surface water, porewater, soil, periphyton, and Gambusia spp. (mosquitofish) were collected from hotspots and non-spot stations and analyzed for various parameters, including total mercury (THg), organic carbon (OC), total carbon (TC), total phosphorus (TP), and total nitrogen (TN) between late 2010 and early 2013. Soil nutrient ratios were significantly different between hotspot and non-hotspot stations, indicating a difference in trophic status and position along the decay continuum or differences in limiting nutrients. Overall, soil total Hg concentrations were negatively correlated with soil TC/TN, while soil TC/TP and soil TN/TP molar ratios and soil THg were negatively correlated at hotspot stations. Meanwhile, mosquitofish THg was negatively correlated with soil TC/TN molar ratio and positively correlated with soil TC/TP and TN/TP molar ratios, suggesting trophic truncation. Soil, surface water, and porewater THg, TC, and OC interactions resulted in significant differences between hotspot and non-hotspot stations and between molar ratios of C, N, and P. Periphyton-surface water THg/OC homeostasis and soil nutrient ratios significantly explained mosquitofish THg concentrations, further indicating a trophic influence on mosquitofish THg and potential hotspot dynamics. Several factors and processes including bottom-up trophic interaction and vegetation influence on Hg accumulation dynamics and food-chain length explain the development and persistence of Hg hotspot formation within the Everglades system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbey-Lee, R. N., Gaiser, E. E., & Trexler, J. C. (2013). Relative roles of dispersal dynamics and competition in determining the isotopic niche breadth of a wetland fish. Freshwater Biology, 58, 780–792. doi:10.1111/fwb.12084.

    Article  Google Scholar 

  • Aiken, G. R., Gilmour, C. C., Krabbenhoft, D. P., & Orem, W. (2011a). Dissolved organic matter in the Florida Everglades: implications for ecosystem restoration. Critical Reviews in Environmental Science and Technology, 41, 217–248. doi:10.1080/10643389.2010.530934.

    Article  CAS  Google Scholar 

  • Aiken, G. R., Hsu-Kim, H., & Ryan, J. N. (2011b). Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environmental Science & Technology, 45, 3196–3201. doi:10.1021/es103992s.

    Article  CAS  Google Scholar 

  • Åkerblom, S., Meili, M., Bringmark, L., et al. (2007). Partitioning of Hg between solid and dissolved organic matter in the humus layer of boreal forests. Water, Air, and Soil Pollution, 189, 239–252. doi:10.1007/s11270-007-9571-1.

    Article  Google Scholar 

  • Arfstrom, C., Macfarlane, A. W., & Jones, R. D. (2000). Distributions of mercury and phosphorous in Everglades soils from Water Conservation Area 3A, Florida, U.S.A. Water, Air, and Soil Pollution, 121, 133–159. doi:10.1023/A:1005214908516.

    Article  CAS  Google Scholar 

  • Atwell, L., Hobson, K. A., & Welch, H. E. (1998). Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1114–1121. doi:10.1139/f98-001.

    Article  CAS  Google Scholar 

  • Axelrad, D.M., Lange, T., Gabriel, M., et al. (2008). Chapter 3B: mercury and sulfur environmental assessment for the Everglades. In 2008 South Florida Environmental Report. West Palm Beach: South Florida Water Management District.

  • Bae, H., Dierberg, F.E., & Ogram, A. (2014). Syntrophs dominate sequences associated with the mercury-methylating gene hgcA in the water conservation areas of the Florida Everglades. Appl Environ Microbiol AEM, 01666-14. doi: 10.1128/AEM.01666-14.

  • Bates, A. L., Orem, W. H., Harvey, J. W., & Spiker, E. C. (2002). Tracing sources of sulfur in the Florida Everglades. Journal of Environmental Quality, 31, 287–299.

    Article  CAS  Google Scholar 

  • Bell, A. H., & Scudder, B. C. (2007). Mercury accumulation in periphyton of Eight River Ecosystems1. JAWRA Journal of the American Water Resources Association, 43, 957–968. doi:10.1111/j.1752-1688.2007.00078.x.

    Article  CAS  Google Scholar 

  • Benoit, J.M., Gilmour, C.C., Heyes, A., et al. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In ACS symposium series (pp 262–297). Washington, DC: American Chemical Society; 1999.

  • Blanco, S., Romo, S., & Villena, M.-J. (2004). Experimental study on the diet of mosquitofish (Gambusia holbrooki) under different ecological conditions in a shallow lake. International Review of Hydrobiology, 89, 250–262. doi:10.1002/iroh.200310684.

    Article  Google Scholar 

  • Bodaly, R. A., Rudd, J. W. M., Fudge, R. J. P., & Kelly, C. A. (1993). Mercury concentrations in fish related to size of remote Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 50, 980–987. doi:10.1139/f93-113.

    Article  CAS  Google Scholar 

  • Brett, M. T., & Goldman, C. R. (1996). A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Science, 93, 7723–7726.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Kitchell, J. F., & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. BioScience, 35, 634–639. doi:10.2307/1309989.

    Article  Google Scholar 

  • Chen, H., Ivanoff, D., & Pietro, K. (2015). Long-term phosphorus removal in the Everglades stormwater treatment areas of South Florida in the United States. Ecological Engineering, 79, 158–168. doi:10.1016/j.ecoleng.2014.12.012.

    Article  Google Scholar 

  • Cleckner, L. B., Garrison, P. J., Hurley, J. P., et al. (1998). Trophic transfer of methyl mercury in the northern Florida Everglades. Biogeochemistry, 40, 347–361.

    Article  CAS  Google Scholar 

  • Cleckner, L. B., Gilmour, C. C., Hurley, J. P., & Krabbenhoft, D. P. (1999). Mercury methylation in periphyton of the Florida Everglades. Limnology and Oceanography, 44, 1815–1825.

    Article  CAS  Google Scholar 

  • Clesceri, L.S., Greenberg, A.E., & Eaton, A.D. (eds.) (1998). Standard methods for the examination of water and wastewater. American Public Health Association.

  • Cleveland, C. C., & Liptzin, D. (2007). C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235–252. doi:10.1007/s10533-007-9132-0.

    Article  Google Scholar 

  • Cousins, S. H. (1980). A trophic continuum derived from plant structure, animal size and a detritus cascade. Journal of Theoretical Biology, 82, 607–618.

    Article  CAS  Google Scholar 

  • Craft, C. B., & Richardson, C. J. (1993). Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglade. Biogeochemistry, 22, 133–156.

    Article  CAS  Google Scholar 

  • Davenport, S. R., & Bax, N. J. (2002). A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen. Canadian Journal of Fisheries and Aquatic Sciences, 59, 514–530. doi:10.1139/f02-031.

    Article  Google Scholar 

  • Davis, S., & Ogden, J. C. (1994). Everglades: the ecosystem and its restoration. Boca Raton: CRC Press.

    Google Scholar 

  • DeBusk, W. F., & Reddy, K. R. (1998). Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh. Soil Science Society of America Journal, 62, 1460–1468.

    Article  CAS  Google Scholar 

  • Demers, J. D., Driscoll, C. T., Fahey, T. J., & Yavitt, J. B. (2007). Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecological Applications, 17, 1341–1351. doi:10.1890/06-1697.1.

    Article  Google Scholar 

  • Demers, J. D., Yavitt, J. B., Driscoll, C. T., & Montesdeoca, M. R. (2013). Legacy mercury and stoichiometry with C, N, and S in soil, pore water, and stream water across the upland-wetland interface: the influence of hydrogeologic setting. Journal of Geophysical Research – Biogeosciences, 118, 825–841. doi:10.1002/jgrg.20066.

    Article  CAS  Google Scholar 

  • Deniro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45, 341–351. doi:10.1016/0016-7037(81)90244-1.

    Article  CAS  Google Scholar 

  • Dierberg, F., Jerauld, M., DeBusk, T., et al. (2015). Community-related trophic variability contributes to variations in mosquitofish (Gambusia holbrooki) mercury concentrations in Water Conservation Area 2A. Coral Springs, FL.

  • Driscoll, C. T., Han, Y.-J., Chen, C. Y., et al. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57, 17. doi:10.1641/B570106.

    Article  Google Scholar 

  • Elser, J. J., & Urabe, J. (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 80, 735–751. doi:10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2.

    Article  Google Scholar 

  • Elser, J. J., Fagan, W. F., Kerkhoff, A. J., et al. (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593–608. doi:10.1111/j.1469-8137.2010.03214.x.

    Article  CAS  Google Scholar 

  • Evers, D. C., Han, Y.-J., Driscoll, C. T., et al. (2007). Biological mercury hotspots in the northeastern United States and southeastern Canada. BioScience, 57, 29–43. doi:10.1641/B570107.

    Article  Google Scholar 

  • Feijoó, C., Leggieri, L., Ocón, C., et al. (2014). Stoichiometric homeostasis in the food web of a chronically nutrient-rich stream. Freshwater Science, 33, 820–831. doi:10.1086/677056.

    Article  Google Scholar 

  • Florida Department of Environmental Protection (1991). 62–160 Florida administrative code: quality assurance.

  • Florida Department of Environmental Protection. (2013). Mercury TMDL for the State of Florida. Tallahassee: Florida Department of Environmental Protection.

    Google Scholar 

  • France, R., Chandler, M., & Peters, R. (1998). Mapping trophic continua of benthic foodwebs: body size-δ15N relationships. Marine Ecology Progress Series, 174, 301–306. doi:10.3354/meps174301.

    Article  Google Scholar 

  • Gilmour, C. C., Riedel, G. S., Ederington, M. C., et al. (1998). Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry, 40, 327–345. doi:10.1023/A:1005972708616.

    Article  CAS  Google Scholar 

  • Grevilliot, F., Krebs, L., & Muller, S. (1998). Comparative importance and interference of hydrological conditions and soil nutrient gradients in floristic biodiversity in flood meadows. Biodiversity and Conservation, 7, 1495–1520. doi:10.1023/A:1008826629011.

    Article  Google Scholar 

  • Guentzel, J. L., Landing, W. M., Gill, G. A., & Pollman, C. D. (1995). Atmospheric deposition of mercury in Florida: the fams project (1992–1994). Water, Air, and Soil Pollution, 80, 393–402. doi:10.1007/BF01189689.

    Article  CAS  Google Scholar 

  • Guentzel, J. L., Landing, W. M., Gill, G. A., & Pollman, C. D. (1998). Mercury and major ions in rainfall, throughfall, and foliage from the Florida Everglades. Science of the Total Environment, 213, 43–51.

    Article  CAS  Google Scholar 

  • Guentzel, J. L., Landing, W. M., Gill, G. A., & Pollman, C. D. (2001). Processes influencing rainfall deposition of mercury in Florida. Environmental Science & Technology, 35, 863–873.

    Article  CAS  Google Scholar 

  • Hagerthey, S. E., Bellinger, B. J., Wheeler, K., et al. (2011). Everglades periphyton: a biogeochemical perspective. Critical Reviews in Environmental Science and Technology, 41, 309–343. doi:10.1080/10643389.2010.531218.

    Article  Google Scholar 

  • Hamelin, S., Amyot, M., Barkay, T., et al. (2011). Methanogens: principal methylators of mercury in lake periphyton. Environmental Science & Technology, 45, 7693–7700. doi:10.1021/es2010072.

    Article  CAS  Google Scholar 

  • Hintelmann, H., Harris, R., Heyes, A., et al. (2002). Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Environmental Science & Technology, 36, 5034–5040. doi:10.1021/es025572t.

    Article  CAS  Google Scholar 

  • Hutcheson, M. S., Smith, C. M., Wallace, G. T., et al. (2008). Freshwater fish mercury concentrations in a regionally high mercury deposition area. Water, Air, and Soil Pollution, 191, 15–31. doi:10.1007/s11270-007-9604-9.

    Article  CAS  Google Scholar 

  • Jarman, W. M., Hobson, K. A., Sydeman, W. J., et al. (1996). Influence of trophic position and feeding location on contaminant levels in the gulf of the farallones food web revealed by stable isotope analysis. Environmental Science & Technology, 30, 654–660. doi:10.1021/es950392n.

    Article  CAS  Google Scholar 

  • Jerauld, M., Dierberg, F.E., DeBusk, W.F., & DeBusk, T.A. (2015). Appendix 3B-1: evaluation of factors influencing methylmercury accumulation in South Florida Marshes. In 2015 South Florida environmental report. West Palm Beach: South Florida Water Management District.

  • Julian, P. (2013). Mercury bio-concentration factor in mosquito fish (Gambusia spp.) in the Florida Everglades. Bulletin of Environmental Contamination and Toxicology, 90, 329–332. doi:10.1007/s00128-012-0939-6.

    Article  CAS  Google Scholar 

  • Julian, P. (2014). Reply to “mercury bioaccumulation and bioaccumulation factors for Everglades mosquitofish as related to sulfate: a re-analysis of Julian II (2013).”. Bulletin of Environmental Contamination and Toxicology, 93, 517–521. doi:10.1007/s00128-014-1389-0.

    Article  CAS  Google Scholar 

  • Julian, P., & Gu, B. (2015). Mercury accumulation in largemouth bass (Micropterus salmoides Lacépède) within marsh ecosystems of the Florida Everglades, USA. Ecotoxicology, 24, 202–214. doi:10.1007/s10646-014-1373-9.

    Article  CAS  Google Scholar 

  • Julian, P., Gu, B., Frydenborg, R., et al. (2014). Chapter 3B: mercury and sulfur environmental assessment for the Everglades. In 2014 South Florida Environmental Report. West Palm Beach: South Florida Water Management District.

  • Julian, P., Gu, B., Redfield, G., et al. (2015a). Chapter 3B: mercury and sulfur environmental assessment for the Everglades. In 2015 South Florida Environmental Report. West Palm Beach: South Florida Water Management District.

  • Julian, P., Payne, G.G., & Xue, S.K. (2015b). Chapter 3A: water quality in the everglades protection areas. In 2015 South Florida environmental report. West Palm Beach: South Florida Water Management District.

  • Julian, P., Gu, B., Redfield, G., & Weaver, K. (2016). Chapter 3B: mercury and sulfur environmental assessment for the Everglades. In 2016 South Florida Environmental Report. West Palm Beach: South Florida Water Management District.

  • Karimi, R., Chen, C. Y., Pickhardt, P. C., et al. (2007). Stoichiometric controls of mercury dilution by growth. Proceedings of the National Academy of Science, 104, 7477–7482. doi:10.1073/pnas.0611261104.

    Article  CAS  Google Scholar 

  • Karimi, R., Fisher, N. S., Folt, C. L., et al. (2010). Multielement stoichiometry in aquatic invertebrates: when growth dilution matters. American Naturalist, 176, 699–709. doi:10.1086/657046.

    Article  Google Scholar 

  • Kidd, K. A., Hesslein, R. H., Fudge, R. J. P., & Hallard, K. A. (1995). The influence of trophic level as measured by δ 15N on mercury concentrations in freshwater organisms. In D. B. Porcella, J. W. Huckabee, & B. Wheatley (Eds.), Mercury as a global pollutant (pp. 1011–1015). Netherlands: Springer.

    Chapter  Google Scholar 

  • Koerselman, W., & Meuleman, A. F. M. (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441. doi:10.2307/2404783.

    Article  Google Scholar 

  • Lange, T. (2015). Fish mercury in the Florida Everglades: management implications for Everglades restoration.

  • Lange, T. R., Royals, H. E., & Connor, L. L. (1993). Influence of water chemistry on mercury concentration in largemouth bass from Florida lakes. Transactions of the American Fisheries Society, 122, 74–84. doi:10.1577/1548-8659(1993)122<0074:IOWCOM>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Langston, W. J., & Spence, S. K. (1995). Metal speciation and bioavailability in aquatic systems. In Biological factors involved in metal concentrations observed in aquatic organisms (pp. 407–473). New York: Wiley.

    Google Scholar 

  • Light, S. S., & Dineen, J. W. (1994). Water control in the everglades: a historical perspective. In S. Davis & J. Ogden (Eds.), Everglades: the ecosystem and its restoration (pp. 47–84). Delray Beach: St. Lucie Press.

    Google Scholar 

  • Liu, G., Cai, Y., Kalla, P., et al. (2008a). Mercury mass budget estimates and cycling seasonality in the Florida Everglades. Environmental Science & Technology, 42, 1954–1960.

    Article  CAS  Google Scholar 

  • Liu, G., Cai, Y., Philippi, T., et al. (2008b). Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation. Environmental Pollution, 153, 257–265. doi:10.1016/j.envpol.2007.08.030.

    Article  CAS  Google Scholar 

  • Liu, G., Cai, Y., Mao, Y., et al. (2009). Spatial variability in mercury cycling and relevant biogeochemical controls in the Florida Everglades. Environmental Science & Technology, 43, 4361–4366. doi:10.1021/es803665c.

    Article  CAS  Google Scholar 

  • Loftus, W. F. (2000). Accumulation and fate of mercury in an Everglades aquatic food web. Miami: Florida International University.

    Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31. doi:10.1007/s002440010075.

    Article  CAS  Google Scholar 

  • Makino, W., Cotner, J. B., Sterner, R. W., & Elser, J. J. (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C: N: P stoichiometry. Functional Ecology, 17, 121–130.

    Article  Google Scholar 

  • Marvin-DiPasquale, M., Windham-Myers, L., Agee, J. L., et al. (2014). Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. Science of the Total Environment, 484, 288–299. doi:10.1016/j.scitotenv.2013.09.098.

    Article  CAS  Google Scholar 

  • McCormick, P., Newman, S., & Vilchek, L. (2009). Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA. Hydrobiologia, 621, 105–114. doi:10.1007/s10750-008-9635-2.

    Article  CAS  Google Scholar 

  • Melillo, J.M., Aber, J.D., Linkins, A.E., et al. (1989). Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Ecology of Arable Land—Perspectives and Challenges, 53–62.

  • Möller, J. (2009). Gravimetric determination of acid detergent fiber and lignin in feed: interlaboratory study. Journal of AOAC International, 92, 74–90.

    Google Scholar 

  • Moye, H. A., Miles, C. J., Phlips, E. J., et al. (2002). Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water. Environmental Science & Technology, 36, 3550–3555. doi:10.1021/es011421z.

    Article  CAS  Google Scholar 

  • Newman, S., Schuette, J., Grace, J. B., et al. (1998). Factors influencing cattail abundance in the northern Everglades. Aquatic Botany, 60, 265–280. doi:10.1016/S0304-3770(97)00089-2.

    Article  Google Scholar 

  • Obrist, D., Johnson, D. W., & Lindberg, S. E. (2009). Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences, 6, 765–777.

    Article  CAS  Google Scholar 

  • Ogden, J. C., Robertson, W. B., Jr., Davis, G. E., & Schmidt, T. W. (1973). Pesticide, polychlorionated biphenols and heavy metals in upper food chain levels. Homestead: National Park Service, Everglades National Park.

    Google Scholar 

  • Orem, W., Gilmour, C., Axelrad, D., et al. (2011). Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration. Critical Reviews in Environmental Science and Technology, 41, 249–288. doi:10.1080/10643389.2010.531201.

    Article  CAS  Google Scholar 

  • Osborne, T. Z., Newman, S., Scheidt, D. J., et al. (2011). Landscape patterns of significant soil nutrients and contaminants in the greater Everglades ecosystem: past, present, and future. Critical Reviews in Environmental Science and Technology, 41, 121–148. doi:10.1080/10643389.2010.530930.

    Article  CAS  Google Scholar 

  • Pace, M. L., Cole, J. J., Carpenter, S. R., & Kitchell, J. F. (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology & Evolution, 14, 483–488. doi:10.1016/S0169-5347(99)01723-1.

    Article  Google Scholar 

  • Persson, J., Fink, P., Goto, A., et al. (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741–751. doi:10.1111/j.1600-0706.2009.18545.x.

    Article  CAS  Google Scholar 

  • Pickhardt, P. C., Folt, C. L., Chen, C. Y., et al. (2002). Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proceedings of the National Academy of Sciences of the United States of America, 99, 4419–4423.

    Article  CAS  Google Scholar 

  • Pickhardt, P. C., Stepanova, M., & Fisher, N. S. (2006). Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus). Environmental Toxicology and Chemistry, 25, 2132–2142.

    Article  CAS  Google Scholar 

  • Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83, 703–718.

    Article  Google Scholar 

  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55, 319–331. doi:10.1016/j.chemosphere.2003.11.011.

    Article  CAS  Google Scholar 

  • Reddy, K. R., DeLaune, R. D., DeBusk, W. F., & Koch, M. S. (1993). Long-term nutrient accumulation rates in the Everglades. Soil Science Society of America Journal, 57, 1147–1155.

    Article  CAS  Google Scholar 

  • Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205–221.

  • Rumbold, D.G. (2015). Trophic transfer of mercury along salinity gradients in Shark River and Caloosahatchee River estuaries.

  • Scheidt, D., & Kalla, P. I. (2007). Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soil and habitat: monitoring for adaptive management: a R-EMAP status report. Athens: United States Environmental Protection Agency.

    Google Scholar 

  • Schoeninger, M. J., & DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48, 625–639. doi:10.1016/0016-7037(84)90091-7.

    Article  CAS  Google Scholar 

  • SFWMD. (2010). Field sampling quality manual. SFWMD-FIELD-QM-001-06. West Palm Beach: South Florida Water Management District.

    Google Scholar 

  • Sinclair, A. R. E., Krebs, C. J., Fryxell, J. M., et al. (2000). Testing hypotheses of trophic level interactions: a boreal forest ecosystem. Oikos, 89, 313–328. doi:10.1034/j.1600-0706.2000.890213.x.

    Article  Google Scholar 

  • Sistla, S. A., Appling, A. P., Lewandowska, A. M., et al. (2015). Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos, 124, 949–959. doi:10.1111/oik.02385.

    Article  CAS  Google Scholar 

  • Skyllberg, U. (2008). Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. Journal of Geophysical Research. doi:10.1029/2008JG000745.

    Google Scholar 

  • Skyllberg, U., & Drott, A. (2010). Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)—an EXAFS study. Environmental Science & Technology, 44, 1254–1259. doi:10.1021/es902091w.

    Article  CAS  Google Scholar 

  • Small, G. E., Helton, A. M., & Kazanci, C. (2009). Can consumer stoichiometric regulation control nutrient spiraling in streams? Journal of the North American Benthological Society, 28, 747–765. doi:10.1899/08-099.1.

    Article  Google Scholar 

  • St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., et al. (1996). Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environmental Science & Technology, 30, 2719–2729. doi:10.1021/es950856h.

    Article  CAS  Google Scholar 

  • Sterner, R. W., & Elser, J. J. (2002). Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton: Princeton University Press.

    Google Scholar 

  • Sterner, R. W., & Hessen, D. O. (1994). Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics, 25, 1–29.

    Article  Google Scholar 

  • Sterner, C., & Lampert, W. (1998). Carbon:phosphorus stoichiometry and food chain production. Ecology Letters, 1, 146–150. doi:10.1046/j.1461-0248.1998.00030.x.

    Article  Google Scholar 

  • Stober, Q. J., Thornton, K., Jones, R., et al. (2001). South Florida ecosystem assessment: phase I/II Everglades stressor interactions: hydropatterns, eutrophication, habitat alteration, and mercury contamination. Washington DC: United States Environmental Protection Agency.

    Google Scholar 

  • US EPA. (2002a). Method 1631 E: mercury in water by oxidation, purge and trop and cold vapor atomic fluorescence spectrometry. Washington DC: US Environmental Protection Agency.

    Google Scholar 

  • US EPA. (2002b). Method 1631 appendix: total mercury in tissue, sludge, sediment and soil by acid digestion and BrCl oxidation. Washington DC: US Environmental Protection Agency.

    Google Scholar 

  • US EPA. (1971). Method 365.2: phosphorus, all forms (colorimetric, ascorbic acid and single reagent). Washington DC: US Environmental Protection Agency.

    Google Scholar 

  • US EPA. (1997). Method 440.0: determination of carbon and nitrogen in sediments and particulates of estuarine/coastal water using elemental analysis. Washington DC: US Environmental Protection Agency.

    Google Scholar 

  • USEPA. (1997). Mercury study report to congress. Volume VI: an ecological assessment for anthropogenic mercury emissions in the United States. Washington DC: United States Environmental Protection Agency.

    Google Scholar 

  • USEPA. (2001). Water quality criterion for the protection of human health: methylmercury. Washington DC: United States Environmental Protection Agency.

    Google Scholar 

  • Vaithiyanathan, P., Richardson, C. J., Kavanaugh, R. G., et al. (1996). Relationships of eutrophication to the distribution of mercury and to the potential for methylmercury production in the peat soils of the Everglades. Environmental Science & Technology, 30, 2591–2597.

    Article  CAS  Google Scholar 

  • Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.

    Article  Google Scholar 

  • Vitousek, P. M. (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285–298. doi:10.2307/1939481.

    Article  CAS  Google Scholar 

  • Williams, A. J., & Trexler, J. C. (2006). A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern Everglades. Hydrobiologia, 569, 493–504. doi:10.1007/s10750-006-0151-y.

    Article  CAS  Google Scholar 

  • Yu, Q., Elser, J. J., He, N., et al. (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1–10. doi:10.1007/s00442-010-1902-z.

    Article  Google Scholar 

  • Zhu, Y., Gu, B., Irick, D. L., et al. (2014). Wading bird guano contributes to Hg accumulation in tree island soils in the Florida Everglades. Environmental Pollution, 184, 313–319. doi:10.1016/j.envpol.2013.08.037.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Garth Redfield and Dr. Todd Osborne for their encouragement, review, and critical comments on earlier versions of this manuscript and the anonymous peer reviewer(s) and editor(s) for their efforts and constructive review of this manuscript. Additionally, we would also like to acknowledge the sampling crew for their effort in collecting the data required for this manuscript and Michelle Kharbanda for assistance with cross checking data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Julian II.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julian, P., Gu, B. & Wright, A.L. Mercury Stoichiometric Relationships in a Subtropical Peatland. Water Air Soil Pollut 227, 472 (2016). https://doi.org/10.1007/s11270-016-3180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3180-9

Keywords

Navigation