Skip to main content
Log in

Selective and Competitive Adsorption of Azo Dyes on the Metal–Organic Framework ZIF-67

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Zeolitic imidazole frameworks (ZIFs), a new adsorbent with a high chemical and thermal stability and a high adsorption capacity, are used for adsorptive removal of azo dyes. The synthesized ZIF-67 was characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetric–differential thermal analysis (TG–DTA) and zeta potential instrument. The adsorption of some azo dyes on ZIF-67 in the single dye systems showed that the removal efficiencies are congo red > methyl orange > methyl red > methyl blue. The highest adsorption capacity of congo red and methyl orange were 3900 and 1340 mg/g, respectively. In a binary dye system the adsorption capacity of congo red decreased, while the removal efficiency of methyl orange increased in comparison with the single systems, indicating that a competitive adsorption of congo red and methyl orange over the ZIF-67 occurred. The experimental data indicate that the electrostatic attraction between ZIF-67 and congo red is the major driving force and the ππ stacking is also responsible for dye adsorption. After 5 cycles of ZIF-67 adsorption and desorption, the congo red removal efficiency maintained more than 95%.

The adsorption of Congo red and Methyl orange on the ZIF-67

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Chinoune, K., Bentaleb, K., Bouberka, Z., Nadim, A., & Maschke, U. (2016). Adsorption of reactive dyes from aqueous solution by dirty bentonite. Applied Clay Science, 123, 64–75.

    Article  CAS  Google Scholar 

  • Fasfous, I. I., Radwan, E. S., & Dawoud, J. N. (2010). Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes. Applied Surface Science, 256, 7246–7252.

    Article  CAS  Google Scholar 

  • Greenwald, M. J., Redding, A. M., & Cannon, F. S. (2014). A rapid kinetic dye test to predict the adsorption of 2-methylisoborneol onto granular activated carbons and to identify the influence of pore volume distributions. Water Research, 68C, 784–792.

    Google Scholar 

  • Guo, X., Xing, T., Lou, Y., & Chen, J. (2016). Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. Journal of Solid State Chemistry, 235, 107–112.

    Article  CAS  Google Scholar 

  • Hameed, B. H., & Rahman, A. A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials, 160, 576–581.

    Article  CAS  Google Scholar 

  • Hasan, Z., & Jhung, S. H. (2015). Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 283, 329–339.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006). Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Research, 40, 119–125.

    Article  CAS  Google Scholar 

  • Howarth, A. J., Liu, Y., Hupp, J. T., & Farha, O. K. (2015). Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. Crystengcomm, 17, 7245–7253.

    Article  CAS  Google Scholar 

  • Khan, N. A., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. Journal of Hazardous Materials, 244–245, 444–456.

    Article  Google Scholar 

  • Khan, N. A., & Jhung, S. H. (2013). Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel. Journal of Hazardous Materials, 260C, 1050–1056.

    Article  Google Scholar 

  • Khan, N. A., Jung, B. K., Hasan, Z., & Jhung, S. H. (2015). Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. Journal of Hazardous Materials, 282, 194–200.

    Article  CAS  Google Scholar 

  • Kuruppathparambil, R. R., Jose, T., Babu, R., Hwang, G. Y., Kathalikkattil, A. C., Kim, D. W., & Park, D. W. (2016). A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates. Applied Catalysis B: Environmental, 182, 562–569.

    Article  CAS  Google Scholar 

  • Lei, Z., Xu, T., Liu, X., Zhang, Y., & Jin, H. (2011). Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions. Journal of Hazardous Materials, 197, 389–396.

    Article  Google Scholar 

  • Li, C., Xiong, Z., Zhang, J. & Wu, C. (2015a). The strengthening role of the amino group in metal–organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption. Journal of Chemical & Engineering Data

  • Li, J., Ng, D. H. L., Song, P., Kong, C., Song, Y., & Yang, P. (2015a). Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption. Biomass & Bioenergy, 75, 189–200.

    Article  Google Scholar 

  • Lin, K. Y. A., & Chang, H. A. (2015a). Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere, 139, 624–631.

    Article  CAS  Google Scholar 

  • Lin, K. Y. A., & Chang, H. A. (2015b). Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water. Journal of the Taiwan Institute of Chemical Engineers, 53, 40–45.

    Article  CAS  Google Scholar 

  • Lin, S., Song, Z., Che, G., Ren, A., Li, P., Liu, C., & Zhang, J. (2014). Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution. Microporous and Mesoporous Materials, 193, 27–34.

    Article  CAS  Google Scholar 

  • Liu, F., Guo, Z., Ling, H., Huang, Z., & Tang, D. (2016). Effect of pore structure on the adsorption of aqueous dyes to ordered mesoporous carbons. Microporous and Mesoporous Materials, 227, 104–111.

    Article  CAS  Google Scholar 

  • Mcguire, C. V., & Forgan, R. S. (2014). The surface chemistry of metal-organic frameworks. Chemical Communications, 51, 5199–5217.

    Article  Google Scholar 

  • Pan, Y., Li, H., Zhang, X. X., Zhang, Z., Tong, X. S., Jia, C. Z., Liu, B., Sun, C. Y., Yang, L. Y., & Chen, G. J. (2015). Large-scale synthesis of ZIF-67 and highly efficient carbon capture using a ZIF-67/glycol-2-methylimidazole slurry. Chemical Engineering Science, 137, 504–514.

    Article  CAS  Google Scholar 

  • Schejn, A., Aboulaich, A., Balan, L., Falk, V., Lalevée, J., Medjahdi, G., Aranda, L., Mozet, K., & Schneider, R. (2014). Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catalysis Science & Technology, 5, 1829–1839.

    Article  Google Scholar 

  • Seo, Y. S., Khan, N. A., & Jhung, S. H. (2015). Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework. Chemical Engineering Journal, 270, 22–27.

    Article  CAS  Google Scholar 

  • Wang, K., Li, C., Liang, Y., Han, T., Huang, H., Yang, Q., Liu, D., & Zhong, C. (2016). Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chemical Engineering Journal, 289, 486–493.

    Article  CAS  Google Scholar 

  • Wang, X. X., Yu, Y. M., Huan, D. H., Hecke, K. V., & Cui, G. H. (2015). An unprecedented 3D manganese(II) MOF displaying (4,5)-connected xah topology. Inorganic Chemistry Communications, 61, 24–26.

    Article  CAS  Google Scholar 

  • Yang, R., Li, H., Huang, M., Yang, H., & Li, A. (2016). A review on chitosan-based flocculants and their applications in water treatment. Water Research, 95, 59–89.

  • Yao, T., Guo, S., Zeng, C., Wang, C., & Zhang, L. (2015). Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres. Journal of Hazardous Materials, 292, 90–97.

    Article  CAS  Google Scholar 

  • Zhou, M., Wu, Y. N., Qiao, J., Zhang, J., Mcdonald, A., Li, G., & Li, F. (2013). The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al). Journal of Colloid and Interface Science, 405, 157–163.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 50878138). We thank our colleagues and other students who participated in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-hang Zhang.

Additional information

Highlights

• Adsorption capacities of ZIF-67 on congo red and methyl orange are 3900 and 1340 mg/g, respectively.

• Adsorption ability of the dyes over ZIF-67 is related to the dye structure and the surface property of ZIF-67.

• Competitive ability of congo red adsorption over ZIF-67 is stronger than that of methyl orange.

• Electrostatic attraction between ZIF-67 and congo red is the major adsorption driving force.

• Removal efficiency of congo red and methyl orange almost unchanged after 5 cycles

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig S1

(DOCX 237 kb)

Fig S2

(DOCX 111 kb)

Table S1

(DOCX 16 kb)

Table S2

(DOCX 12 kb)

Table S3

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zh., Zhang, Jl., Liu, Jm. et al. Selective and Competitive Adsorption of Azo Dyes on the Metal–Organic Framework ZIF-67. Water Air Soil Pollut 227, 471 (2016). https://doi.org/10.1007/s11270-016-3166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3166-7

Keywords

Navigation