Skip to main content
Log in

Photocatalytic Degradation of Acid Orange II Using Activated Carbon Fiber-Supported Cobalt Phthalocyanine Coupled with Hydrogen Peroxide

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Activated carbon fiber-supported cobalt phthalocyanine photocatalyst (Co-TDTAPc-F) was prepared in this study, and its performance for dye wastewater decoloration was investigated, and Acid Orange II (AO7) was selected as the target pollutant. The morphology analysis of Co-TDTAPc-F was conducted, and the effects of catalyst loading, H2O2 addition, solution pH, and catalyst reuse on AO7 decoloration efficiency were evaluated. The results showed that AO7 decoloration efficiency increased by 23.2% during the Co-TDTAPc-F photocatalytic process as compared with solely Co-TDTAPc-F adsorption, and the decoloration process was fitted by pseudo first-order reaction. The increase of catalyst loading and H2O2 content both benefitted AO7 decoloration. Strong photocatalytic activities were observed at both acidic and alkaline conditions; however, total organic carbon (TOC) removal efficiency decreased with the increase of solution pH. Strong photocatalytic activity was still observed after four times reuse. The mechanisms of AO7 photocatalytic decomposition by Co-TDTAPc-F were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Chauke, V., & Nyokong, T. (2008). Photocatalytic oxidation of 1-hexene using GaPc and InPc octasubstituted derivatives. Journal of Molecular Catalysis A: Chemical, 289, 9–13.

    Article  CAS  Google Scholar 

  • Chen, W. X., Lu, W. Y., Yao, Y. Y., & Xu, M. H. (2007). Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation, using fiber-supported cobalt phthalocyanine. Environmental Science & Technology, 41, 6240–6245.

    Article  CAS  Google Scholar 

  • Cornish, B. J. P. A., Lawton, L. A., & Robertson, P. K. J. (2000). Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Applied Catalysis B: Environmental, 25, 59–67.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Salari, D., & Khataee, A. R. (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology, A: Chemistry, 157, 111–116.

    Article  CAS  Google Scholar 

  • Eskandarloo, H., Badiei, A., Tavakoli, A. R., Behnajady, M. A., & Ziarani, G. M. (2014). Simple and safe educational experiments for demonstration of environmental application of heterogeneous photocatalysis process using the example of natural fruit juice dye degradation. Journal of Materials Education, 36, 111–116.

    Google Scholar 

  • Guo, T., Bai, Z., Wu, C., & Zhu, T. (2008). Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation. Applied Catalysis B: Environmental, 79, 171–178.

    Article  CAS  Google Scholar 

  • Guo, Z. C., Chen, B., Zhang, M. Y., Mu, J. B., Shao, C. L., & Liu, Y. C. (2010). Zinc phthalocyanine hierarchical nanostructure with hollow interior space: solvent–thermal synthesis and high visible photocatalytic property. Journal of Colloid and Interface Science, 348, 37–42.

    Article  CAS  Google Scholar 

  • Huang, Z. F., Bao, H. W., Yao, Y. Y., Lu, W. Y., & Chen, W. X. (2014). Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst. Applied Catalysis B: Environmental, 154–155, 36–43.

    Article  Google Scholar 

  • Khoza, P., & Nyokong, T. (2014). Photocatalytic behavior of phthalocyanine-silver nanoparticle conjugates supported on polystyrene fibers. Journal of Molecular Catalysis A: Chemical, 395, 34–41.

    Article  CAS  Google Scholar 

  • Kluson, P., Drobek, M., Kalaji, A., Zarubova, S., Krysa, J., & Rakusan, J. (2008). Singlet oxygen photogeneration efficiencies of a series of phthalocyanines in well-defined spectral regions. Journal of Photochemistry and Photobiology, A: Chemistry, 199, 267–273.

    Article  CAS  Google Scholar 

  • Li, J., Wang, T. C., Lu, N., Zhang, D. D., Wu, Y., Wang, T. W., & Sato, M. (2011). Degradation of dyes by active species injected from a gas phase surface discharge. Plasma Sources Science & Technology, 20, 034019.

    Article  Google Scholar 

  • Li, M., Ma, X. X., Wu, Y. Y., & He, X. Q. (2015). Enhanced electrocatalytic performance toward oxygen reduction in an alkaline medium by anchoring cobalt tetraferrocenylphthalocyanine onto grapheme. Journal of Applied Electrochemistry, 45, 21–31.

    Article  CAS  Google Scholar 

  • Lu, W. Y., Chen, W. X., Li, N., Xu, M. H., & Yao, Y. Y. (2009). Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine. Applied Catalysis B: Environmental, 87, 146–151.

    Article  CAS  Google Scholar 

  • Mackintosh, H. J., Budd, P. M., & McKeown, N. B. (2008). Catalysis by microporous phthalocyanine and porphyrin network polymers. Journal of Materials Chemistry, 18, 573–578.

    Article  CAS  Google Scholar 

  • Makhseed, S., Al-Kharafi, F., Samuel, J., & Ateya, B. (2009). Catalytic oxidation of sulphide ions using a novel microporous cobalt phthalocyanine network polymer in aqueous solution. Catalysis Communications, 10, 1284–1287.

    Article  CAS  Google Scholar 

  • Marais, E., Klein, R., Antunes, E., & Nyokong, T. (2007). Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes. Journal of Molecular Catalysis A: Chemical, 261, 36–42.

    Article  CAS  Google Scholar 

  • Mele, G., Annese, C., D’Accolti, L., De Riccardis, A., Fusco, C., Palmisano, L., Scarlino, A., & Vasapollo, G. (2015). Photoreduction of carbon dioxide to formic acid in aqueous suspension: a comparison between phthalocyanine/TiO2 and porphyrin/TiO2 catalysed processes. Molecules, 20, 396–415.

    Article  CAS  Google Scholar 

  • Nensala, N., & Nyokong, T. (2000). Photocatalytic properties of neodymium diphthalocya-nine towards the transformation of 4-chlorophenol. Journal of Molecular Catalysis A: Chemical, 164, 69–76.

    Article  CAS  Google Scholar 

  • Oh, W. C., Zhang, F. J., Chen, M. L., Lee, Y. M., & Ko, W. B. (2009). Characterization and relative photonic efficiencies of a new Fe-ACF/TiO2 composite photocatalysts designed for organic dye decomposition. Journal of Industrial and Engineering Chemistry, 15, 190–195.

    Article  CAS  Google Scholar 

  • Ozoemena, K., Kuznetsova, N., & Nyokong, T. (2001). Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metalloph-thalocyanines. Journal of Photochemistry and Photobiology, A: Chemistry, 39, 217–224.

    Article  Google Scholar 

  • Palmisano, G., Gutiérrez, M. C., Ferrer, M. L., Gil-Luna, M. D., Augugliaro, V., Yurdakal, S., & Pagliaro, M. (2008). TiO2/ORMOSIL thin films doped with phthalocyanine dyes: new photocatalytic devices activated by solar light. Journal of Physical Chemistry C, 112, 2667–2670.

    Article  CAS  Google Scholar 

  • Poulios, I., Micropoulou, E., Panou, R., & Kostopoulou, E. (2003). Photooxidation of eosin Y in the presence of semiconducting oxides. Applied Catalysis B: Environmental, 41, 345–355.

    Article  CAS  Google Scholar 

  • Sehlotho, N., & Nyokong, T. (2004). Zinc phthalocyanine photocatalyzed oxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 219, 201–207.

    Article  CAS  Google Scholar 

  • Tai, C., Jiang, G., Liu, J., Zhou, Q., & Liu, J. (2005). Rapid degradation of bisphenol a using air as the oxidant catalyzed by polynuclear phthalocyanine complexes under visible light irradiation. Journal of Photochemistry and Photobiology, A: Chemistry, 172, 275–282.

    Article  CAS  Google Scholar 

  • Teng, F., Zhang, G. Z., Wang, Y. Q., Gao, C. T., Zhang, Z. X., & Xie, E. Q. (2015). Photocatalytic properties of titania/porous carbon fibers composites prepared by self-template method. Journal of Materials Science, 50, 2921–2931.

    Article  CAS  Google Scholar 

  • Titinchi, S. J. J., Von Willingh, G., Abbo, H. S., & Prasad, R. (2015). Tri- and tetradentate copper complexes: a comparative study on homogeneous and heterogeneous catalysis over oxidation reactions. Catalysis Science & Technology, 5, 325–338.

    Article  CAS  Google Scholar 

  • Touati, A., Hammedi, T., Najjar, W., Ksibi, Z., & Sayadi, S. (2016). Photocatalytic degradation of textile wastewater in presence of hydrogen peroxide: effect of cerium doping titania. Journal of Industrial and Engineering Chemistry, 35, 36–44.

    Article  CAS  Google Scholar 

  • Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of Catalysis, 122, 178–192.

    Article  CAS  Google Scholar 

  • Wang, Z., Mao, W., Chen, H., Zhang, F., Fan, X., & Qian, G. (2006). Copper (II) phthalocyanine tetrasulfonate sensitized nanocrystalline titania photocatalyst: synthesis in situ and photocatalysis under visible light. Catalysis Communications, 7, 518–522.

    Article  CAS  Google Scholar 

  • Wang, T. C., Ma, T. Z., Qu, G. Z., Liang, D. L., & Hu, S. B. (2014). Performance evaluation of hybrid gas–liquid pulse discharge plasma-induced degradation of polyvinyl alcohol-containing wastewater. Plasma Chemistry and Plasma Processing, 34, 1115–1127.

    Article  Google Scholar 

  • Wang, Q. L., Li, H. Y., Yang, J. H., Sun, Q., Li, Q. Y., & Yang, J. J. (2016). Iron phthalocynine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2. Applied Catalysis B: Environmental, 192, 182–192.

    Article  CAS  Google Scholar 

  • Wu, L., Li, A., Gao, G., Fei, Z., Xu, S., & Zhang, Q. (2007). Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine. Journal of Molecular Catalysis A: Chemical, 269, 183–189.

    Article  CAS  Google Scholar 

  • Zangeneh, H., Zinatizadeh, A. A. L., Habibi, M., Akia, M., & Isa, M. H. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. Journal of Industrial and Engineering Chemistry, 26, 1–36.

    Article  CAS  Google Scholar 

  • Zanjanchi, M. A., Ebrahimian, A., & Arvand, M. (2010). Sulphonated cobalt phthalocyanine–MCM-41: an active photocatalyst for degradation of 2,4-dichlorophenol. Journal of Hazardous Materials, 175, 992–1000.

    Article  CAS  Google Scholar 

  • Zhang, J., Xu, H., Chen, H., & Anpo, M. (2003). Study on the formation of H2O2 on TiO2 photocatalysts and their activity for the photocatalytic degradation of X-GL dye. Research on Chemical Intermediates, 29, 839–848.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Projects funded by the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021402-1520), Postdoctoral Fund of Shaanxi Province (K3380216027), Natural Science Foundation of Shaanxi Province (K3320215185, K3320215186), and Fundamental Research Fund for the Central Universities (Z109021617) for the financial supports to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhou Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, Y., Qu, G. et al. Photocatalytic Degradation of Acid Orange II Using Activated Carbon Fiber-Supported Cobalt Phthalocyanine Coupled with Hydrogen Peroxide. Water Air Soil Pollut 227, 464 (2016). https://doi.org/10.1007/s11270-016-3159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3159-6

Keywords

Navigation