Skip to main content

Advertisement

Log in

Soil Bacterial Community Response to Short-Term Manipulation of the Nitrogen Deposition Form and Dose in a Chinese Fir Plantation in Southern China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The changes of soil bacterial biomass and community composition were monitored in a simulated nitrogen (N) deposition experiment during 4 years of Cunninghamia lanceolata growth in a plantation site in southern China. The experimental design included two N forms (NH4Cl and KNO3) and five levels of N deposition (0, 20, 40, 60, 80 kg N ha−1) for 2 years. Research into the bacterial population was conducted using plate count, phospholipid fatty acid (PLFA) composition, and 16Sr DNA gene-based high-throughput pyrosequencing methods. The results of plate count and PLFA analysis indicated that ammonium (NH4 +) addition increased bacterial number and biomass, whereas nitrate (NO3 ) addition decreased these values. The high-throughput sequencing showed that N deposition of the two N forms inhibited the growth of bacteria compared with control plots, and the changing trend was related to the NH4 +-N/NO3 -N ratio of soil. When the N deposition dose exceeded 20 kg N ha−1, there was a significant effect on cultured bacteria counts and bacterial biomass. When examining the bacterial community, we observed 22 bacterial phyla of which Proteobacteria, Acidobacteria, and Actinobacteria were dominant. Acidobacteria abundance was higher in NH4 + treatments than NO3 treatments. When the rates of NH4 + deposition increased, Acidobacteria abundance decreased; however, it showed a positive correlation in NO3 treatments. The bacterial cluster structures were significantly different between different N addition rates in the NO3 -treated plots. This research will provide data support to addressing the negative influences of nitrogen deposition and provide reference for soil management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., & Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48(11), 921–934.

    Article  Google Scholar 

  • Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M. L., Magill, A. H., Martin, M. E., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience, 53(4), 375–389.

    Article  Google Scholar 

  • Aerts, R., & Bobbink, R. (1999). The impact of atmospheric nitrogen deposition on vegetation processes in terrestrial, non-forest ecosystems. In The impact of nitrogen deposition on natural and semi-natural ecosystems (pp. 85–122). Netherlands: Springer.

  • Arnebrant, K., Bååth, E., Söderström, B., & Nohrstedt, H. Ö. (1996). Soil microbial activity in eleven Swedish coniferous forests in relation to site fertility and nitrogen fertilization. Scandinavian Journal of Forest Research, 11(1–4), 1–6.

    Article  Google Scholar 

  • Bååth, E., & Anderson, T. H. (2003). Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry, 35(7), 955–963.

    Article  Google Scholar 

  • Bachar, A., Al-Ashhab, A., Soares, M. I., Sklarz, M. Y., Angel, R., Ungar, E. D., & Gillor, O. (2010). Soil microbial abundance and diversity along a low precipitation gradient. Microbial Ecology, 60(2), 453–461.

    Article  Google Scholar 

  • Bardgett, R. D., Freeman, C., & Ostle, N. J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2(8), 805–814.

    Article  CAS  Google Scholar 

  • Biederbeck, V. O., Curtin, D., Bouman, O. T., Campbell, C. A., & Ukrainetz, H. (1996). Soil microbial and biochemical properties after ten years of fertilization with urea and anhydrous ammonia. Canadian Journal of Soil Science, 76(1), 7–14.

    Article  CAS  Google Scholar 

  • Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P. S., & Nautiyal, C. S. (2012). Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecology, 64(2), 450–460.

    Article  Google Scholar 

  • Chen, X. Y., Mulder, J., Wang, Y. H., Zhao, D. W., & Xiang, R. J. (2004). Atmospheric deposition, mineralization and leaching of nitrogen in subtropical forested catchments, South China. Environmental Geochemistry and Health, 26(2), 179–186.

    Article  CAS  Google Scholar 

  • Covaleda, S., Pajares, S., Gallardo, J. F., Padilla, J., Báez, A., & Etchevers, J. D. (2009). Effect of different agricultural management systems on chemical fertility in cultivated tepetates of the Mexican trans-volcanic belt. Agriculture, Ecosystems & Environment, 129(4), 422–427.

    Article  CAS  Google Scholar 

  • DeForest, J. L., Zak, D. R., Pregitzer, K. S., & Burton, A. J. (2004). Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology and Biochemistry, 36(6), 965–971.

    Article  CAS  Google Scholar 

  • Di Bella, J. M., Bao, Y., Gloor, G. B., et al. (2013). High throughput sequencing methods and analysis for microbiome research[J]. Journal of Microbiological Methods, 95(3), 401–414.

    Article  CAS  Google Scholar 

  • Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 626–631.

    Article  CAS  Google Scholar 

  • Fierer, N., Morse, J. L., Berthrong, S. T., Bernhardt, E. S., & Jackson, R. B. (2007). Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology, 88(9), 2162–2173.

    Article  Google Scholar 

  • Frey, S. D., Knorr, M., Parrent, J. L., & Simpson, R. T. (2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196(1), 159–171.

    Article  Google Scholar 

  • Gallo, M., Amonette, R., Lauber, C., Sinsabaugh, R. L., & Zak, D. R. (2004). Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microbial Ecology, 48(2), 218–229.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878), 889–892.

    Article  CAS  Google Scholar 

  • Gensberger, E. T., Gössl, E. M., Antonielli, L., et al. (2015). Effect of different heterotrophic plate count methods on the estimation of the composition of the culturable microbial community. Peer Journal, 3, e862.

    Article  Google Scholar 

  • Gremion, F., Chatzinotas, A., & Harms, H. (2003). Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environmental Microbiology, 5(10), 896–907.

    Article  CAS  Google Scholar 

  • Hackl, E., Zechmeister-Boltenstern, S., Bodrossy, L., & Sessitsch, A. (2004). Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Applied and Environmental Microbiology, 70(9), 5057–5065.

    Article  CAS  Google Scholar 

  • Jangid, K., Williams, M. A., Franzluebbers, A. J., Sanderlin, J. S., Reeves, J. H., Jenkins, M. B., & Whitman, W. B. (2008). Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 40(11), 2843–2853.

    Article  CAS  Google Scholar 

  • Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16SrRNA and 16SrRNA genes. Applied and Environmental Microbiology, 72(3), 1719–1728.

    Article  CAS  Google Scholar 

  • Ju, X., Liu, X., Zhang, F., & Roelcke, M. (2004). Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. AMBIO: A Journal of the Human Environment, 33(6), 300–305.

    Article  Google Scholar 

  • Kauppi, S., Romantschuk, M., Strömmer, R., et al. (2012). Natural attenuation is enhanced in previously contaminated and coniferous forest soils. Environmental Science and Pollution Research, 19(1), 53–63.

    Article  CAS  Google Scholar 

  • Kim, H., & Kang, H. (2011). The impacts of excessive nitrogen additions on enzyme activities and nutrient leaching in two contrasting forest soils. The Journal of Microbiology, 49(3), 369–375.

    Article  Google Scholar 

  • Kopecky, J., Kyselkova, M., Omelka, M., Cermak, L., Novotna, J., Grundmann, G. L., & Sagova-Mareckova, M. (2011). Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiology Ecology, 78(2), 386–394.

    Article  CAS  Google Scholar 

  • Koyama, A., Wallenstein, M. D., Simpson, R. T., & Moore, J. C. (2013). Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Frontiers in Microbiology, 5, 516.

    Google Scholar 

  • LaPara, T. M., Nakatsu, C. H., Pantea, L., & Alleman, J. E. (2000). Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Applied and Environmental Microbiology, 66(9), 3951–3959.

    Article  CAS  Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15), 5111–5120.

    Article  CAS  Google Scholar 

  • Liu, X., Duan, L., Mo, J., Du, E., Shen, J., Lu, X., & Zhang, F. (2011). Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution, 159(10), 2251–2264.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., & Zhang, F. (2013). Enhanced nitrogen deposition over China. Nature, 494(7438), 459–462.

    Article  CAS  Google Scholar 

  • Lombao, A., Martín, A., Barreiro, A., et al. (2013). Microbial biomass estimated by phospholipid fatty acids (PLFA pattern) in a soil with different post-fire treatments (seeding, mulching) one year after the experimental fire. Flamma, 4(1), 9–12.

    Google Scholar 

  • Lu, X. K., Mo, J. M., & Dong, S. (2008). Effects of nitrogen deposition on forest biodiversity. Acta Ecologica Sinica, 28(11), 5532–5548.

    Article  CAS  Google Scholar 

  • Männistö, M. K., Tiirola, M., & Häggblom, M. M. (2007). Bacterial communities in Arctic fields of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiology Ecology, 59(2), 452–465.

    Article  Google Scholar 

  • Mo, J. M., Brown, S., Xue, J., Fang, Y. T., Li, Z., Li, D., & Dong, S. (2007). Response of nutrient dynamics of decomposing pine (Pinus massoniana) needles to simulated N deposition in a disturbed and a rehabilitated forest in tropical China. Ecological Research, 22(4), 649–658.

    Article  CAS  Google Scholar 

  • Myers, R. T., Zak, D. R., White, D. C., & Peacock, A. (2001). Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Science Society of America Journal, 65(2), 359–367.

    Article  CAS  Google Scholar 

  • Nacke, H., Thürmer, A., Wollherr, A., Will, C., Hodac, L., Herold, N., & Daniel, R. (2011). Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PloS One, 6(2), e17000.

    Article  CAS  Google Scholar 

  • Quaiser, A., Ochsenreiter, T., Lanz, C., Schuster, S. C., Treusch, A. H., Eck, J., et al. (2003). Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Molecular Microbiology, 50(2), 563–575.

    Article  CAS  Google Scholar 

  • Ramirez, K. S., Craine, J. M., & Fierer, N. (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 18(6), 1918–1927.

    Article  Google Scholar 

  • Richter, D. D., Markewitz, D., Heine, P. R., Jin, V., Raikes, J., Tian, K., & Wells, C. G. (2000). Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. Forest Ecology and Management, 138(1), 233–248.

    Article  Google Scholar 

  • Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774.

    Article  CAS  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., & Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.

    Article  CAS  Google Scholar 

  • Shange, R. S., Ankumah, R. O., Ibekwe, A. M., Zabawa, R., & Dowd, S. E. (2012). Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS One, 7(7), e40338.

    Article  CAS  Google Scholar 

  • Shapleigh, J. P. (2011). Oxygen control of nitrogen oxide respiration, focusing on α-proteobacteria. Biochemical Society Transactions, 39(1), 179–183.

    Article  CAS  Google Scholar 

  • Smit, E., Leeflang, P., Gommans, S., Broek, J., Mil, S., & Wernars, K. (2001). Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology, 67(5), 2284–2291.

    Article  CAS  Google Scholar 

  • Song, M., Jing, S., Zhou, Y., et al. (2015). Dynamics of soil nematode communities in wheat fields under different nitrogen management in Northern China Plain. European Journal of Soil Biology, 71, 13–20.

    Article  CAS  Google Scholar 

  • Treseder, K. K. (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11(10), 1111–1120.

    Article  Google Scholar 

  • VanInsberghe, D., Hartmann, M., Stewart, G. R., et al. (2013). Isolation of a substantial proportion of forest soil bacterial communities detected via pyrotag sequencing. Applied and Environmental Microbiology, 79(6), 2096–2098.

    Article  CAS  Google Scholar 

  • Waldrop, M. P., Zak, D. R., & Sinsabaugh, R. L. (2004). Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biology and Biochemistry, 36(9), 1443–1451.

    Article  CAS  Google Scholar 

  • Wang, C. T., Wang, G. X., Yong, W., Rashid, R., Li, M., Lei, H., & Luo, Y. Q. (2015). Urea addition and litter manipulation alter plant community and soil microbial community composition in a Kobresia humilis meadow. European Journal of Soil Biology, 70, 7–14.

    Article  CAS  Google Scholar 

  • Xue, C., & Othmer, H. G. (2009). Multiscale models of taxis-driven patterning in bacterial populations. SIAM Journal on Applied Mathematics, 70(1), 133–167.

    Article  Google Scholar 

  • Youssef, N. H., & Elshahed, M. S. (2009). Diversity rankings among bacterial lineages in soil. The ISME Journal, 3(3), 305–313.

    Article  CAS  Google Scholar 

  • Zelles, L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils, 29(2), 111–129.

    Article  CAS  Google Scholar 

  • Zhan, X., Yu, G., He, N., et al. (2014). Nitrogen deposition and its spatial pattern in main forest ecosystems along north–south transect of eastern China. Chinese Geographical Science, 24(2), 137–146.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by [1] National Key Research Program of China (No.2016YFD0600302) and [2] Research Institute of Forestry, the Chinese Academy of Forestry (No.CAFYBB2012026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruzhen Jiao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Dong, Y., Sun, Q. et al. Soil Bacterial Community Response to Short-Term Manipulation of the Nitrogen Deposition Form and Dose in a Chinese Fir Plantation in Southern China. Water Air Soil Pollut 227, 447 (2016). https://doi.org/10.1007/s11270-016-3152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3152-0

Keywords

Navigation