Skip to main content
Log in

Trace Element and Pesticide Dynamics During a Flood Event in the Save Agricultural Watershed: Soil-River Transfer Pathways and Controlling Factors

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Agricultural practices are the main source of water contamination in rural areas. Rainfall events, and subsequently, soil leaching and storm runoff are mainly controlling the transfer of pollutants from diffuse sources in watersheds during floods. These periods are also very important to better understand their dynamics, particularly their different soil-river transfer pathways (surface runoff SR, subsurface runoff SSR, and groundwater flow GF). This study focuses on riverine transfers of both pesticides and trace elements. High-resolution monitoring of water discharge and water sampling were performed during a flood event that occured in May 2010 in an agricultural catchment of SW France. Chemical composition of major and trace elements, silica, alkalinity, pH and conductivity, DOC and POC, TSM, and commonly used pesticides were analyzed with a high sampling frequency. The different stream flow components (SR, SSR, and GF) were assessed using two independent hydrograph separation methods: a hydrological approach based on Maillet’s formula (1905) for the recession period and a chemical approach based on physico-chemical tracers, TSM for SR and PO4 3− for GF. Both methods exhibited important contributions of SR (33 %) and SSR (40 %) to the total riverine pollutant transfers. The contribution of different components was also visible using concentration-discharge relationships which exhibited hysteresis phenomenon between the rising and the falling limbs of the hydrograph. Higher concentrations during the rising period (clockwise hysteresis) were characteristic of pollutants mainly exported by SR (trifluralin, Cd). Anticlockwise hysteresis with higher concentration during the recession period showed pollutants mainly exported by SSR (metolachlor, Cu). Moreover, significant relationships were highlighted between the controlling factors (DOC, POC, and TSM) and SR, SSR, and GF contributions: DOC and the complexed pollutants were highly correlated to SSR while POC, TSM, and the adsorbed pollutants were linked to SR. During the flood, K d of most pollutants increased, particularly at the beginning, and therefore, future studies should investigate their availability to living organisms and thus their toxicity. An additional characteristic equation between K d and K ow of the different pesticides was proposed to help future management, modelling, and estimation of pollutant transfers during floods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad, R., Nelson, P. N., & Kookana, R. S. (2006). The molecular composition of soil organic matter as determined by 13C NMR and elemental analyses and correlation with pesticide sorption. European Journal of Soil Science, 57(6), 883–893.

    Article  CAS  Google Scholar 

  • Anderson, M. G., & Burt, T. P. (1980). Interpretation of recession flow. Journal of Hydrology, 46(1-2), 89–101.

    Article  Google Scholar 

  • Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.-C., & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247–260. doi:10.1016/j.agee.2007.07.011.

    Article  Google Scholar 

  • Bača, P. (2008). Hysteresis effect in suspended sediment concentration in the Rybárik Basin, Slovakia/Effet D’hystérèse dans la concentration des sédiments en suspension dans le bassin versant de Rybárik (Slovaquie). Hydrological Sciences Journal, 53(1), 224–235.

    Article  Google Scholar 

  • Barnes, B. S. (1939). The structure of discharge-recession curves. Transactions of the American Geophysical Union, 20, 721–725.

    Article  Google Scholar 

  • Boithias, L., Sauvage, S., Taghavi, L., Merlina, G., Probst, J.-L., & Sánchez Pérez, J. M. (2011). Occurrence of metolachlor and trifluralin losses in the Save River agricultural catchment during floods. Journal of Hazardous Materials, 196, 210–219.

    Article  CAS  Google Scholar 

  • Boithias, L., Sauvage, S., Merlina, G., Jean, S., Probst, J.-L., & Sánchez Pérez, J. M. (2014). New insight into pesticide partition coefficient K D for modelling pesticide fluvial transport: application to an agricultural catchment in South-western France. Chemosphere, 99, 134–142.

    Article  CAS  Google Scholar 

  • Briggs, G. G. (1981). Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. Journal of Agricultural and Food Chemistry, 29(5), 1050–1059. doi:10.1021/jf00107a040.

    Article  CAS  Google Scholar 

  • Chow, V. T. (1964). Handbook of applied hydrology: a compendium of water resources technology. New York: McGraw-Hill, Sec 7: 47–48.

  • Davis, J. S., & Keller, H. M. (1983). Dissolved loads in streams and rivers—discharged and seasonally related variations.

  • Deasy, C., Brazier, R. E., Heathwaite, A. L., & Hodgkinson, R. (2009). Pathways of runoff and sediment transfer in small agricultural catchments. Hydrological Processes, 23(9), 1349–1358. doi:10.1002/hyp.7257.

    Article  Google Scholar 

  • Devault, D. A., Merlina, G., Lim, P., Probst, J.-L., & Pinelli, E. (2007). Multi-residues analysis of pre-emergence herbicides in fluvial sediments: application to the Mid-Garonne River. Journal of Environmental Monitoring, 9(9), 1009–1017.

    Article  CAS  Google Scholar 

  • Duffner, A., Ingwersen, J., Hugenschmidt, C., & Streck, T. (2012). Pesticide transport pathways from a sloped litchi orchard to an adjacent tropical stream as identified by hydrograph separation. Journal of Environmental Quality, 41(4), 1315–1323.

    Article  CAS  Google Scholar 

  • Edwards, A. C., & Withers, P. J. A. (2008). Transport and delivery of suspended solids, nitrogen and phosphorus from various sources to freshwaters in the UK. Journal of Hydrology, 350(3), 144–153.

    Article  CAS  Google Scholar 

  • El Azzi, D., Viers, J., Guiresse, M., Probst, A., Aubert, D., Caparros, J., Charles, F., Guizien, K., & Probst, J. L. (2013). Origin and fate of copper in a Small mediterranean vineyard catchment: new insights from combined chemical extraction and δ65Cu isotopic composition. Science of the Total Environment, 463, 91–101.

    Article  Google Scholar 

  • Etchanchu, D., & Probst, J.-L. (1986). Erosion et transport de matières en suspension dans un bassin versant en région agricole. methode de mesure du ruissellement superficiel, de sa charge et des deux composantes du transport solide dans un cours D’eau. Comptes Rendus de l’Académie Des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de L’univers, Sciences de La Terre, 302(17), 1063–1068.

    Google Scholar 

  • Flury, M., Leuenberger, J., Studer, B., & Flühler, H. (1995). Transport of anions and herbicides in a loamy and a sandy field soil. Water Resources Research, 31(4), 823–835.

    Article  CAS  Google Scholar 

  • Förstner, U., Wittmann, G. T. W., Prosi, F., Van Lierde, J. H. (1979). Metal pollution in the aquatic environment. Vol. 2. Springer-Verlag Berlin. http://www.getcited.org/pub/101963214.

  • Gaiero, D. M., Probst, J.-L., Depetris, P. J., Bidart, S. M., & Leleyter, L. (2003). Iron and other transition metals in patagonian riverborne and windborne materials: geochemical control and transport to the Southern South Atlantic Ocean. Geochimica et Cosmochimica Acta, 67(19), 3603–3623.

    Article  CAS  Google Scholar 

  • Gao, Q., Tao, Z., Shen, C., Sun, Y., Yi, W., & Xing, C. (2002). Riverine organic carbon in the Xijiang River (South China): seasonal variation in content and flux budget. Environmental Geology, 41(7), 826–832.

    Article  CAS  Google Scholar 

  • Goolsby, D. A., Coupe, R. C., Markovchick, D. J. (1991). Distribution of selected herbicides and nitrate in the Mississippi River and its major tributaries, April through June 1991. US Department of the Interior, US Geological Survey, Water Resources Division. http://pubs.usgs.gov/wri/1991/4163/report.pdf.

  • Hannigan, R., & Bickford, N. (2003). Hydrochemical variations in a spring-fed river, Spring River, Arkansas. Environmental Geosciences, 10(4), 167–188.

    Article  Google Scholar 

  • House, W. A., & Warwick, M. S. (1998). Hysteresis of the solute concentration/discharge relationship in rivers during storms. Water Research, 32(8), 2279–2290.

    Article  CAS  Google Scholar 

  • Johnson, F. A., & East, J. W. (1982). Cyclical relationships between river discharge and chemical concentration during flood events. Journal of Hydrology, 57(1-2), 93–106.

    Article  CAS  Google Scholar 

  • Johnson, A. C., Haria, A. H., Bhardwaj, C. L., Williams, R. J., & Walker, A. (1996). Preferential flow pathways and their capacity to transport isoproturon in a structured clay soil. Pesticide Science, 48(3), 225–237.

    Article  CAS  Google Scholar 

  • Kanazawa, J. (1989). Relationship between the soil sorption constants for pesticides and their physicochemical properties. Environmental Toxicology and Chemistry, 8(6), 477–484. doi:10.1002/etc.5620080604.

    Article  CAS  Google Scholar 

  • Kar, D., Sur, P., Mandai, S. K., Saha, T., & Kole, R. K. (2007). Assessment of heavy metal pollution in surface water. International Journal of Environmental Science and Technology, 5(1), 119–124. doi:10.1007/BF03326004.

    Article  Google Scholar 

  • Kattan, Z., Gac, J.-Y., & Probst, J.-L. (1987). Suspended sediment load and mechanical erosion in the Senegal basin—estimation of the surface runoff concentration and relative contributions of channel and slope erosion. Journal of Hydrology, 92(1), 59–76.

    Article  Google Scholar 

  • Kleinman, P. J. A., Sharpley, A. N., Saporito, L. S., Buda, A. R., & Bryant, R. B. (2008). Application of manure to no-till soils: phosphorus losses by sub-surface and surface pathways. Nutrient Cycling in Agroecosystems, 84(3), 215–227. doi:10.1007/s10705-008-9238-3.

    Article  Google Scholar 

  • Ladouche, B., Probst, A., Viville, D., Idir, S., David, B., Loubet, M., Probst, J.-L., & Bariac, T. (2001). Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach Catchment, France). Journal of Hydrology, 242(3), 255–274.

    Article  CAS  Google Scholar 

  • Linsley Jr, R. K., Adam Kohler, M., Paulhus, J. L. H. (1975). Hydrology for engineers. https://trid.trb.org/view.aspx?id=42130.

  • Lu, Y., & Allen, H. E. (2001). Partitioning of copper onto suspended particulate matter in river waters. Science of the Total Environment, 277(1), 119–132.

    Article  CAS  Google Scholar 

  • Ludwig, W., Probst, J.-L., & Kempe, S. (1996). Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 10(1), 23–41.

    Article  CAS  Google Scholar 

  • Macary, F., Morin, S., Probst, J.-L., & Saudubray, F. (2014). A multi-scale method to assess pesticide contamination risks in agricultural watersheds. Ecological Indicators, 36(January), 624–639. doi:10.1016/j.ecolind.2013.09.001.

    Article  CAS  Google Scholar 

  • Maillet, E. T. (1905). Essais D’hydraulique Souterraine & Fluviale. Hermann.

  • Martin, J. D., Crawford C. G., Larson, S. J. (2003). Pesticides in streams: summary statistics; preliminary results from cycle I of the National Water Quality Assessment Program (NAWQA), 1992-2001. Http://ca.Water.Usgs.gov/pnsp/pestsw/Pest-SW_2001_Text.Html. Accessed August 24: 2004.

  • Mul, M. L., Mutiibwa, R. K., Uhlenbrook, S., & Savenije, H. H. G. (2008). Hydrograph separation using hydrochemical tracers in the Makanya Catchment, Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 33(1), 151–156.

    Article  Google Scholar 

  • N’guessan, Y. M., Probst, J. L., Bur, T., & Probst, A. (2009). Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from? Science of the Total Environment, 407(8), 2939–2952. doi:10.1016/j.scitotenv.2008.12.047.

    Article  Google Scholar 

  • Oeurng, C., Sauvage, S., & Sánchez-Pérez, J.-M. (2010). Dynamics of suspended sediment transport and yield in a large agricultural catchment, Southwest France. Earth Surface Processes and Landforms, 35(11), 1289–1301.

    Article  Google Scholar 

  • Oeurng, C., Sauvage, S., Coynel, A., Maneux, E., Etcheber, H., & Sánchez-Pérez, J.-M. (2011). Fluvial transport of suspended sediment and organic carbon during flood events in a large agricultural catchment in Southwest France. Hydrological Processes, 25(15), 2365–2378.

    Article  CAS  Google Scholar 

  • Oursel, B., Garnier, C., Pairaud, I., Omanović, D., Durrieu, G., Syakti, A. D., Le Poupon, C., Thouvenin, B., & Lucas, Y. (2014). Behaviour and fate of urban particles in coastal waters: settling rate, size distribution and metals contamination characterization. Estuarine, Coastal and Shelf Science, 138, 14–26.

    Article  CAS  Google Scholar 

  • Pinder, G. F., & Jones, J. F. (1969). Determination of the ground-water component of peak discharge from the chemistry of total runoff. Water Resources Research, 5(2), 438–445.

    Article  CAS  Google Scholar 

  • Probst, J. L. (1983). Hydrologie du bassin de La Garonne. Modèle de mélanges. Bilan de L’érosion. Exportation Des phosphates et Des nitrates (p. 148). Toulouse: ThèseUniversité Paul Sabatier.

    Google Scholar 

  • Probst, J.-L. (1985). Nitrogen and phosphorus exportation in the Garonne basin (France). Journal of Hydrology, 76(3), 281–305.

    Article  CAS  Google Scholar 

  • Probst, J.-L. (1986). Dissolved and suspended matter transported by the Girou river (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal, 31(1), 61–79.

    Article  CAS  Google Scholar 

  • Probst, J.-L., & Bazerbachi, A. (1986). Transport en solution et en suspension par la garonne supérieure. Sciences Géologiques Bulletin, 39(1), 79–98.

    Google Scholar 

  • Revel, J.-C., & Guiresse, M. (1995). Erosion due to cultivation of calcareous clay soils on the hillsides of South West France. I. Effect of former farming practices. Soil and Tillage Research, 35(3), 147–155.

    Article  Google Scholar 

  • Roche, M. (1963). Hydrologie de surface. http://www.documentation.ird.fr/hor/fdi:02081.

  • Roussiez, V., Probst, A., & Probst, J.-L. (2013). Significance of floods in metal dynamics and export in a small agricultural catchment. Journal of Hydrology, 499, 71–81.

    Article  CAS  Google Scholar 

  • Salpeteur, I., & Angel, J.-M. (2010). Valeurs de référence pour les teneurs en éléments traces dans Les eaux de rivières et Les sédiments, obtenues en France dans le cadre du nouvel atlas géochimique européen*(I). Environnement, Risques & Santé, 9(2), 121–135.

    Google Scholar 

  • Shafer, M. M., Overdier, J. T., Hurley, J. P., Armstrong, D., & Webb, D. (1997). The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA). Chemical Geology, 136(1), 71–97.

    Article  CAS  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124.

    Article  CAS  Google Scholar 

  • Singh, K. P., & Stall, J. B. (1971). Derivation of base flow recession curves and parameters. Water Resources Research, 7(2), 292–303.

    Article  Google Scholar 

  • Taghavi, L. (2010). Dynamique de Transfert Des Pesticides En Périodes de Crue Sur Les Bassins Versants Agricoles Gascons. PhD thesis, University of Toulouse, INPT, http://ethesis.inp-toulouse.fr/archive/00001489/.

  • Taghavi, L., Probst, J.-L., Merlina, G., Marchand, A.-L., Durbe, G., & Probst, A. (2010). Flood event impact on pesticide transfer in a small agricultural catchment (Montoussé at Auradé, South West France). International Journal of Environmental Analytical Chemistry, 90(3-6), 390–405. doi:10.1080/03067310903195045.

    Article  CAS  Google Scholar 

  • Taghavi, L., Merlina, G., Probst, J.-L. (2011). The role of storm flows in concentration of pesticides associated with particulate and dissolved fractions as a threat to aquatic ecosystems—case study: the agricultural watershed of Save River (Southwest of France). Knowledge and Management of Aquatic Ecosystems, no. 400 (February): 06. doi:10.1051/kmae/2011002.

  • Tan, G. H. (1992). Comparison of solvent extraction and solid-phase extraction for the determination of organochlorine pesticide residues in water. Analyst, 117(7), 1129–1132. doi:10.1039/AN9921701129.

    Article  CAS  Google Scholar 

  • Tardy, Y., Bustillo, V., Roquin, C., Mortatti, J., & Victoria, R. (2005). The Amazon. Bio-geochemistry applied to river basin management: part I. Hydro-climatology, hydrograph separation, mass transfer balances, stable isotopes, and modelling. Applied Geochemistry, 20(9), 1746–1829. doi:10.1016/j.apgeochem.2005.06.001.

    Article  CAS  Google Scholar 

  • Thurman, E. M., Meyer, M. T., Mills, M. S., Zimmerman, L. R., Perry, C. A., & Goolsby, D. A. (1994). Formation and transport of deethylatrazine and deisopropylatrazine in surface water. Environmental Science & Technology, 28(13), 2267–2277.

    Article  CAS  Google Scholar 

  • Toler, L. G. (1965). Relation between chemical quality and water discharge in Spring Creek, Southwestern Georgia. US Geological Survey Professional Paper 525: C209–13.

  • Tomlin, C. (2006). Pesticide manual book. Alton: British Council for Protection of Crops Publications.

    Google Scholar 

  • Turner, J. V. (2009). Estimation and prediction of the exchange of groundwater and surface water: field methodologies. eWater Technical Report. eWater Cooperative Research Centre, Canberra. http://ewatercrc.com.au/reports/Turner-2009-Field_Methodologies.pdf. http://119.15.105.36/uploads/files/Turner-2009-Field_Methodologies.pdf.

  • Vesper, D. J., & White, W. B. (2003). Metal transport to karst springs during storm flow: an example from fort Campbell, Kentucky/Tennessee, USA. Journal of Hydrology, 276(1–4), 20–36. doi:10.1016/S0022-1694(03)00023-4.

    Article  CAS  Google Scholar 

  • Wauchope, R. D., Buttler, T. M., Hornsby, A. G., Augustijn-Beckers, P. W. M., Burt, J. P. (1992). The SCS/ARS/CES pesticide properties database for environmental decision-making. In G. W. Ware (Ed.), Reviews of environmental contamination and toxicology, 1–155. Reviews of Environmental Contamination and Toxicology 123. Springer New York. doi:10.1007/978-1-4612-2862-2_1.

  • Xue, H. B., Sigg, L., & Gächter, R. (2000). Transport of Cu, Zn and Cd in a small agricultural catchment. Water Research, 34(9), 2558–2568. doi:10.1016/S0043-1354(00)00015-4.

    Article  CAS  Google Scholar 

  • Zhao, G., Wu, X., Tan, X., & Wang, X. (2011). Sorption of heavy metal ions from aqueous solutions: a review. Open Colloid Science Journal, 4, 19–31.

    Article  Google Scholar 

Download references

Acknowledgements

This study has been realized within the inter-regional project INSOLEVIE (Environmental risks associated to agricultural pollutions and physico-chemical and biological quality of stream waters), funded by Aquitain and Midi-Pyrenees Regions. We thank the French Ministry for Higher Education and Research, the University Toulouse 3 Paul Sabatier, and the Doctoral School “Sciences de l’Univers, de l’Environnement et de l’Espace” (SDU2E) for a PhD grant awarded to Désirée El Azzi. We sincerely thank two anonymous reviewers for their valuable and constructive comments on the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Probst.

Appendix

Appendix

Table 2 Minimum, maximum, and average dissolved (μg L1) and particulate (μg g1) trace metal contents (n = 22 samples) during the flash flood event of May 2010 in the Save River basin (LD between 1 and 100 ng L−1)
Table 3 Characteristics and minimum, maximum and average of pesticide contents (μg L−1, n = 22 samples) in unfiltered (UF) and filtered (F) water during the flash flood event of May 2010 in the Save River

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Azzi, D., Probst, J.L., Teisserenc, R. et al. Trace Element and Pesticide Dynamics During a Flood Event in the Save Agricultural Watershed: Soil-River Transfer Pathways and Controlling Factors. Water Air Soil Pollut 227, 442 (2016). https://doi.org/10.1007/s11270-016-3144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3144-0

Keywords

Navigation