Skip to main content
Log in

Addition of Vermicompost to Heavy Metal-Contaminated Soil Increases the Ability of Black Oat (Avena strigosa Schreb) Plants to Remove Cd, Cr, and Pb

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The contamination of soil with heavy metals is a serious agricultural issue. The presence of foods contaminated with heavy metals in the human diet can cause health damages. Metal phytoextraction processes remove soil contaminants through plant absorption; however, plants display different responses to the metal contamination of the soil. Thus, the purposes of this paper were to determine cadmium (Cd), chromium (Cr), and lead (Pb) immobilization in soil mixed with different amounts of stabilized vermicompost (obtained by earthworm composting) and verify if this vermicompost helps in the removal of heavy metal through the phytoextraction technique with black oat (Avena strigosa Schreb cv IAPAR 61) plants. The addition of a high quantity of vermicompost (50, 75, and 100%) to the soil presents similar results to the immobilization of Cd, Cr, and Pb, and a similar trend was observed in lower quantities (0 and 25%) of vermicompost. The addition of vermicompost improves the growth of black oat plants, but only the treatment with 25% of vermicompost showed promising results in the absorption of Cr and Pb, and the treatment with 50% in the absorption of Cd. Finally, we suggest that “IAPAR 61” black oat cultivar is efficient Cd, Cr, and Pb accumulators. However, heavy metal remained mostly in the root, indicating that root-to-shoot translocation was not efficient, hindering its application for phytoremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnich, N., Lanhers, M. C., Laurensot, F., Podor, R., Montiel, A., & Burnel, D. (2003). In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite. Environmental Pollution, 124, 139–149. doi:10.1016/S0269-7491(02)00416-5.

    Article  CAS  Google Scholar 

  • Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120. doi:10.1016/j.jenvman.2012.04.002.

    Article  CAS  Google Scholar 

  • Bolan, N. S., & Duraisamy, V. P. (2003). Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Australian Journal of Soil Research, 41, 533–555. doi:10.1071/SR02122.

    Article  CAS  Google Scholar 

  • Boonyapookana, B., Parkpian, P., Techapinyawat, S., DeLaune, R. D., & Jugsujinda, A. (2005). Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 40, 117–137. doi:10.1081/ESE-200033621.

    Article  Google Scholar 

  • Borges, A. R., Becker, E. M., Dessuy, M. B., Vale, M. G. R., & Welz, B. (2014). Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling. Spectrochimica Acta - Part B Atomic Spectroscopy, 92, 1–8. doi:10.1016/j.sab.2013.11.001.

    Article  CAS  Google Scholar 

  • Cao, H., Chen, J., Zhang, J., Zhang, H., Qiao, L., & Men, Y. (2010). Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. Journal of Environmental Science, 22, 1792–1799. doi:10.1016/S1001-0742(09)60321-1.

    Article  CAS  Google Scholar 

  • Chen, H., & Cutright, T. (2001). EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45, 21–28. doi:10.1016/S0045-6535(01)00031-5.

    Article  CAS  Google Scholar 

  • Chrysochoou, M., Dermatas, D., & Grubb, D. G. (2007). Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate. Journal of Hazardous Materials, 144, 1–14. doi:10.1016/j.jhazmat.2007.02.008.

    Article  CAS  Google Scholar 

  • Clemente, R., Escolar, Á., & Bernal, M. P. (2006). Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresource Technology, 97, 1894–1901. doi:10.1016/j.biortech.2005.08.018.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Evangelou, M. W. H., Robinson, B. H., & Schulin, R. (2012). A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Scientific World Journal, 2012, 1–10. doi:10.1100/2012/173829.

    Article  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40. doi:10.1016/j.envpol.2004.03.030.

    Article  CAS  Google Scholar 

  • Dias, B. O., Silva, C. A., Higashikawa, F. S., Roig, A., & Sánchez-Monedero, M. A. (2010). Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresource Technology, 101, 1239–1246. doi:10.1016/j.biortech.2009.09.024.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Peralta-Videa, J. R., Montes, M., de la Rosa, G., & Corral-Diaz, B. (2004). Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresource Technology, 92, 229–235. doi:10.1016/j.biortech.2003.10.002.

    Article  CAS  Google Scholar 

  • Harmanescu, M., Alda, L., Bordean, D., Gogoasa, I., & Gergen, I. (2011). Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County. Romanian Chemistry Center Journal, 5, 64. doi:10.1186/1752-153X-5-64.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environment Pollution, 152, 686–692. doi:10.1016/j.envpol.2007.06.056.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management, 28, 215–225. doi:10.1016/j.wasman.2006.12.012.

    Article  CAS  Google Scholar 

  • Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. N., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61. doi:10.1016/j.scitotenv.2005.03.024.

    Article  CAS  Google Scholar 

  • Mandiwana, K. L., Panichev, N., & Panicheva, S. (2011). Determination of chromium (VI) in black, green and herbal teas. Food Chemistry, 129, 1839–1843. doi:10.1016/j.foodchem.2011.05.124.

    Article  CAS  Google Scholar 

  • Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 6, 121–133. doi:10.1007/s10311-007-0133-y.

    Article  CAS  Google Scholar 

  • Mohamed, I., Ahamadou, B., Li, M., Gong, C., Cai, P., Liang, W., & Huang, Q. (2010). Fractionation of copper and cadmium and their binding with soil organic matter in a contaminated soil amended with organic materials. Journal of Soils Sediments, 10, 973–982. doi:10.1007/s11368-010-0199-1.

    Article  CAS  Google Scholar 

  • Odjegba, V. J., & Fasidi, I. O. (2004). Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology, 13, 637–646. doi:10.1007/s10646-003-4424-1.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184, 105–126. doi:10.1007/s11270-007-9401-5.

    Article  CAS  Google Scholar 

  • Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. Journal of Hazardous Materials, 185, 549–574. doi:10.1016/j.jhazmat.2010.09.082.

    Article  CAS  Google Scholar 

  • Pinto, A. P., Mota, A. M., De Varennes, A., & Pinto, F. C. (2004). Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Environment, 326, 239–247. doi:10.1016/j.scitotenv.2004.01.004.

    Article  CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181. doi:10.1016/j.plantsci.2010.08.016.

    Article  CAS  Google Scholar 

  • Sekara, A., Poniedzialek, M., Ciura, J., & Jedrszczyk, E. (2005). Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Polish Journal of Environment Studies, 14(4), 509–516.

    CAS  Google Scholar 

  • Sparks, D. L. (1996). Methods of soil analysis: chemical methods. Madison, WI: SSSA Book Series.

    Google Scholar 

  • Sridhara-Chary, N., Kamala, C. T., & Raj, D. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69, 513–524. doi:10.1016/j.ecoenv.2007.04.013.

    Article  Google Scholar 

  • Uraguchi, S., Watanabe, I., Yoshitomi, A., Kiyono, M., & Kuno, K. (2006). Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. Journal of Experimental Botany, 57, 2955–2965. doi:10.1093/jxb/erl056.

    Article  CAS  Google Scholar 

  • Uraguchi, S., Kiyono, M., Sakamoto, T., Watanabe, I., & Kuno, K. (2009). Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat (Avena strigosa Schreb.). Planta, 230, 267–276. doi:10.1007/s00425-009-0939-x.

    Article  CAS  Google Scholar 

  • Vamerali, T., Bandiera, M., & Mosca, G. (2010). Field crops for phytoremediation of metal-contaminated land. A review. Environment of Chemistry Letters, 8, 1–17. doi:10.1007/s10311-009-0268-0.

    Article  CAS  Google Scholar 

  • Van Engelen, D. L., Sharpe-Pedler, R. C., & Moorhead, K. K. (2007). Effect of chelating agents and solubility of cadmium complexes on uptake from soil by Brassica juncea. Chemosphere, 68, 401–408. doi:10.1016/j.chemosphere.2007.01.015.

    Article  Google Scholar 

  • Weng, L., Temminghoff, E. J. M., Lofts, S., Tipping, E., & Van Riemsdijk, W. H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environmental Science and Technology, 36, 4804–4810. doi:10.1021/es0200084.

    Article  CAS  Google Scholar 

  • Wyszkowski M, Radziemska M (2013) Assessment of tri- and hexavalent chromium phytotoxicity on oats (Avena sativa L.) biomass and content of nitrogen compounds. Water. Air. Soil Pollution 224. doi:10.1007/s11270-013-1619-9

  • Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206, 293–299. doi:10.1007/s004250050403.

    Article  CAS  Google Scholar 

  • Zhu, R., Wu, M., & Yang, J. (2011). Mobilities and leachabilities of heavy metals in sludge with humus soil. Journal of Environmental Sciences, 23, 247–254. doi:10.1016/S1001-0742(10)60399-3.

    Article  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science Total Environment, 407, 1551–1561. doi:10.1016/j.scitotenv.2008.10.061.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Centro Universitário UNIVATES for the financial support and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil) for the grant and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille E. Granada.

Additional information

Lucélia Hoehne and Christina V. S. de Lima contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoehne, L., de Lima, C.V.S., Martini, M.C. et al. Addition of Vermicompost to Heavy Metal-Contaminated Soil Increases the Ability of Black Oat (Avena strigosa Schreb) Plants to Remove Cd, Cr, and Pb. Water Air Soil Pollut 227, 443 (2016). https://doi.org/10.1007/s11270-016-3142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3142-2

Keywords

Navigation