Skip to main content
Log in

Synthesis of Supported Ruthenium Catalyst for Phenol Degradation in the Presence of Peroxymonosulfate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Industrial synthesis processes produce high concentration of hazardous organic pollutants into water body, which must be removed before being discharged. Advanced oxidation processes (AOPs) using heterogeneous catalysts has been widely utilized for wastewater treatment. Here, RuO2-based catalyst was synthesized by a general impregnation method and used to oxidize phenol by peroxymonosulfate (PMS) as an oxidant in aqueous solution. The properties of this supported catalyst were characterized by SEM (scanning electron microscopy), XRD (powder X-ray diffraction), and nitrogen adsorption-desorption. The mesoporous Al2O3 support had large surface area and high thermal stability. It is found that ruthenium oxide-based catalyst is highly effective to activate PMS to related sulfate radicals. The effects of catalyst loading, phenol concentration, PMS concentration, reaction temperature, and reusability of the as-prepared catalyst on phenol degradation have been investigated. Overall, our findings demonstrate that in RuO2/Al2O3 mesoporous catalyst, Oxone (PMS) is effectively activated, and 100% phenol degradation occurs in 60 min. To regenerate the deactivated catalyst and improve its catalytic properties, three different methods involving annealing in air, washing with water, and applying ultrasonics were used. The catalyst was recovered thoroughly by heating treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agustina, T. E., Ang, H., & Vareek, V. (2005). A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6(4), 264–273.

    Article  CAS  Google Scholar 

  • Anbia, M., & Amirmahmoodi, S. (2011). Adsorption of phenolic compounds from aqueous solutions using functionalized SBA-15 as a nano-sorbent. Scientia Iranica, 18(3), 446–452.

    Article  CAS  Google Scholar 

  • Anbia, M., & Ghaffari, A. (2009). Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer. Applied Surface Science, 255(23), 9487–9492.

    Article  CAS  Google Scholar 

  • Anipsitakis, G. P., & Dionysiou, D. D. (2003). Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology, 37(20), 4790–4797.

    Article  CAS  Google Scholar 

  • Anipsitakis, G. P., & Dionysiou, D. D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 38(13), 3705–3712.

    Article  CAS  Google Scholar 

  • Anipsitakis, G. P., Dionysiou, D. D., & Gonzalez, M. A. (2006). Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environmental Science & Technology, 40(3), 1000–1007.

    Article  CAS  Google Scholar 

  • Anipsitakis, G. P., Stathatos, E., & Dionysiou, D. D. (2005). Heterogeneous activation of oxone using Co3O4. The Journal of Physical Chemistry B, 109(27), 13052–13055.

    Article  CAS  Google Scholar 

  • Cao, S., Yeung, K. L., Kwan, J. K., To, P. M., & Samuel, C. (2009). An investigation of the performance of catalytic aerogel filters. Applied Catalysis B: Environmental, 86(3), 127–136.

    Article  CAS  Google Scholar 

  • Carrier, M., Besson, M., Guillard, C., & Gonze, E. (2009). Removal of herbicide diuron and thermal degradation products under catalytic wet air oxidation conditions. Applied Catalysis B: Environmental, 91(1), 275–283.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, J., Qiao, X., Wang, D., & Cai, X. (2008). Performance of nano-Co3O4/peroxymonosulfate system: kinetics and mechanism study using Acid Orange 7 as a model compound. Applied Catalysis B: Environmental, 80(1), 116–121.

    Article  CAS  Google Scholar 

  • Gallezot, P., Chaumet, S., Perrard, A., & Isnard, P. (1997). Catalytic wet air oxidation of acetic acid on carbon-supported ruthenium catalysts. Journal of Catalysis, 168(1), 104–109.

    Article  CAS  Google Scholar 

  • Gao, C., Lin, Y.-J., Li, Y., Evans, D. G., & Li, D.-Q. (2009). Preparation and characterization of spherical mesoporous CeO2−Al2O3 composites with high thermal stability. Industrial & Engineering Chemistry Research, 48(14), 6544–6549.

    Article  CAS  Google Scholar 

  • Hu, L., Yang, X., & Dang, S. (2011). An easily recyclable Co/SBA-15 catalyst: heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Applied Catalysis B: Environmental, 102(1), 19–26.

    Article  CAS  Google Scholar 

  • Khalil, K. M. (2007). Synthesis and characterization of mesoporous ceria/alumina nanocomposite materials via mixing of the corresponding ceria and alumina gel precursors. Journal of Colloid and Interface Science, 307(1), 172–180.

    Article  CAS  Google Scholar 

  • Li, D., Wu, C., Tang, P., & Feng, Y. (2014). In situ synthesis and properties of ZSM-5/α-Al2O3 composite. Materials Letters, 133, 278–280.

    Article  CAS  Google Scholar 

  • Liu, W.-M., Hu, Y.-Q., & Tu, S.-T. (2010). Active carbon–ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent. Journal of Hazardous Materials, 179(1), 545–551.

    Article  CAS  Google Scholar 

  • Lu, M., Yao, Y., Gao, L., Mo, D., Lin, F., & Lu, S. (2015). Continuous treatment of phenol over an Fe2O3/γ-Al2O3 catalyst in a fixed-bed reactor. Water, Air, & Soil Pollution, 226(4), 1–13.

    Article  Google Scholar 

  • Melero, J., Calleja, G., Martínez, F., Molina, R., & Pariente, M. (2007). Nanocomposite Fe2O3/SBA-15: an efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chemical Engineering Journal, 131(1), 245–256.

    Article  CAS  Google Scholar 

  • Mijangos, F., Varona, F., & Villota, N. (2006). Changes in solution color during phenol oxidation by Fenton reagent. Environmental Science & Technology, 40(17), 5538–5543.

    Article  CAS  Google Scholar 

  • Minh, D. P., Gallezot, P., & Besson, M. (2006). Degradation of olive oil mill effluents by catalytic wet air oxidation: 1. Reactivity of p-coumaric acid over Pt and Ru supported catalysts. Applied Catalysis B: Environmental, 63(1), 68–75.

    Article  CAS  Google Scholar 

  • Muhammad, S., Saputra, E., Sun, H., Ang, H.-M., Tadé, M. O., & Wang, S. (2013). Removal of phenol using sulphate radicals activated by natural zeolite-supported cobalt catalysts. Water, Air, & Soil Pollution, 224(12), 1–9.

    Article  CAS  Google Scholar 

  • Muhammad, S., Shukla, P. R., Tadé, M. O., & Wang, S. (2012). Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water. Journal of Hazardous Materials, 215, 183–190.

    Article  Google Scholar 

  • Rao, P. M., Wolfson, A., Kababya, S., Vega, S., & Landau, M. (2005). Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices. Journal of Catalysis, 232(1), 210–225.

    Article  CAS  Google Scholar 

  • Saputra, E., Muhammad, S., Sun, H., Ang, H. M., Tadé, M. O., & Wang, S. (2012). Red mud and fly ash supported Co catalysts for phenol oxidation. Catalysis Today, 190(1), 68–72.

    Article  CAS  Google Scholar 

  • Shukla, P., Fatimah, I., Wang, S., Ang, H., & Tadé, M. O. (2010a). Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater. Catalysis Today, 157(1), 410–414.

    Article  CAS  Google Scholar 

  • Shukla, P., Sun, H., Wang, S., Ang, H. M., & Tadé, M. O. (2011a). Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catalysis Today, 175(1), 380–385.

    Article  CAS  Google Scholar 

  • Shukla, P., Sun, H., Wang, S., Ang, H. M., & Tadé, M. O. (2011b). Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water. Separation and Purification Technology, 77(2), 230–236.

    Article  CAS  Google Scholar 

  • Shukla, P., Wang, S., Singh, K., Ang, H., & Tadé, M. O. (2010b). Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Applied Catalysis B: Environmental, 99(1), 163–169.

    Article  CAS  Google Scholar 

  • Shukla, P. R., Wang, S., Sun, H., Ang, H. M., & Tadé, M. (2010c). Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Applied Catalysis B: Environmental, 100(3), 529–534.

    Article  CAS  Google Scholar 

  • Wang, S. (2008). A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments, 76(3), 714–720.

    Article  CAS  Google Scholar 

  • Yalfani, M. S., Contreras, S., Medina, F., & Sueiras, J. (2009). Phenol degradation by Fenton’s process using catalytic in situ generated hydrogen peroxide. Applied Catalysis B: Environmental, 89(3), 519–526.

    Article  CAS  Google Scholar 

  • Zhang, W., Tay, H. L., Lim, S. S., Wang, Y., Zhong, Z., & Xu, R. (2010). Supported cobalt oxide on MgO: highly efficient catalysts for degradation of organic dyes in dilute solutions. Applied Catalysis B: Environmental, 95(1), 93–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Research Council of Iran University of Science and Technology (Tehran) and Iran National Science Foundation (INSF) for the financial support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Anbia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbia, M., Rezaie, M. Synthesis of Supported Ruthenium Catalyst for Phenol Degradation in the Presence of Peroxymonosulfate. Water Air Soil Pollut 227, 349 (2016). https://doi.org/10.1007/s11270-016-3047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3047-0

Keywords

Navigation