Skip to main content
Log in

In Situ Field-Scale Remediation of Low Cd-Contaminated Paddy Soil Using Soil Amendments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

At present, the remediation of heavy-metal-polluted cropland soil is a considerable problem. In this study, in situ immobilization field experiment was conducted by planting rice (Oryza sativa L.) in low Cd-contaminated paddy soil to determine the optimal soil amendment that would reduce the accumulation of Cd in brown rice. GL (main component is alkaline residue), FG (main components are Si and Ca), and SH (main component is lime) were utilized as amendments. The remediation effects of the amendments on the soil and rice were investigated, and the potential mechanisms of reducing Cd availability to rice were analyzed. Amendment application significantly increased the soil pH value, reduced the DTPA-extractable Cd concentrations, and shifted Cd species from the exchangeable Cd fractions to the carbonate-bound, Fe-Mn oxides and residual fractions in paddy soil. For the plant, amendment application apparently increased the concentrations of Ca in rice plants, which could compete with Cd in root uptake. Besides, amendment application also effectively restricted the translocation of Cd from roots to shoots and consequently led to a notable decrease of Cd concentration in brown rice. These results demonstrated that the FG ameliorant could be effective in reducing Cd bioavailability and accumulation in rice grown on low Cd-contaminated paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DTPA:

Diethylene triamine pentacetic acid

CEC:

Cation exchange capacity

PCA:

Principal component analysis

References

  • Bolan, N. S., Makino, T., Kunhikrishnan, A., Kim, P. J., Ishikawa, S., Murakami, M., et al. (2013). Chapter Four—Cadmium Contamination and Its Risk Management in Rice Ecosystems. Advances in Agronomy, 119(47), 183–273.

    Article  CAS  Google Scholar 

  • Broadley, M., Brown, P., Buerkert, A., Cakmak, I., Cooper, J., Eichert, T., et al. (2012). Copyright——Marschner’s Mineral Nutrition of Higher Plants (Third Edition). Marschners Mineral Nutrition of Higher Plants, 68(4), iv.

    Google Scholar 

  • Cho, S. C., Chao, Y. Y., & Kao, C. H. (2012). Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings. Journal of Plant Physiology, 169(9), 892–898.

    Article  CAS  Google Scholar 

  • Grasshoff, K., Kremling, K., & Ehrhardt, M. (2007). Chapter 13. Determination of natural radioactive tracers: Wiley − VCH Verlag GmbH.

  • Gu, H. H., Qiu, H., Tian, T., Zhan, S. S., Deng, T. H. B., Chaney, R. L., et al. (2011). Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere, 83(9), 1234–1240.

    Article  CAS  Google Scholar 

  • Huang, J. H., Hsu, S. H., & Wang, S. L. (2011). Effects of rice straw ash amendment on Cu solubility and distribution in flooded rice paddy soils. Journal of Hazardous Materials, 186(2-3), 1801–1807.

    Article  CAS  Google Scholar 

  • Janoš, P., Vávrová, J., Herzogová, L., & Pilařová, V. (2010). Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: a sequential extraction study. Geoderma, 159(3–4), 335–341.

    Google Scholar 

  • JF, M., K, T., N, Y., N, M., S, K., M, K., et al. (2006). A silicon transporter in rice. Nature, 440(7084), 688-691.

  • Komárek, M., Vaněk, A., & Ettler, V. (2013). Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environmental Pollution, 172(172C), 9–22.

    Article  Google Scholar 

  • Liang, X., Han, J., Xu, Y., Sun, Y., Wang, L., & Tan, X. (2014). In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite. Geoderma, 235–236(4), 9–18.

    Article  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1966). Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Voprosy Virusologii, 11(5), 421–428.

    Google Scholar 

  • Makino, T., Sugahara, K., Sakurai, Y., Takano, H., Kamiya, T., Sasaki, K., et al. (2006). Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals. Environmental Pollution, 144(1), 2–10.

    Article  CAS  Google Scholar 

  • Ming, L., Yong, Z., Khan, S., Qin, P. F., & Liao, B. H. (2010). Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area. Environmental Monitoring & Assessment, 168(1-4), 215–222.

    Article  Google Scholar 

  • Ministry of Environmental Protection, Ministry of Land and Resources of China, 2014. National Survey of Soil Pollution Bulletin. Beijing.

  • Misra, U. K., Gawdi, G., Akabani, G., & Pizzo, S. V. (2002). Cadmium-induced DNA synthesis and cell proliferation in macrophages: the role of intracellular calcium and signal transduction mechanisms. Cellular Signalling, 14(4), 327–340.

    Article  CAS  Google Scholar 

  • Moshat, S., Datta, S., Bandyopadhyay, A., & Pal, P. K. (2010). Optimization of CNC end milling process parameters using PCA-based Taguchi method. International Journal of Engineering Science & Technology, 2(1), 92–102.

    Article  Google Scholar 

  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant Journal for Cell & Molecular Biology, 32(32), 539–548.

    Article  CAS  Google Scholar 

  • Rizwan, M., Meunier, J. D., & Keller, C. (2012). Frontiers | Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. Journal of Hazardous Materials, 209–210(209-210), 326–334.

    Article  Google Scholar 

  • Shi, G., Cai, Q., Liu, C., & Wu, L. (2010). Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul. Plant Growth Regulation, 61(1), 45–52.

    Article  CAS  Google Scholar 

  • Suthar, V., Mahmood-ul-Hassan, M., Memon, K. S., & Rafique, E. (2013). Heavy-metal phytoextraction potential of spinach and mustard grown in contaminated calcareous soils. Communications in Soil Science & Plant Analysis, 44(18), 2757–2770.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tica, D., Udovic, M., & Lestan, D. (2011). Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 85(4), 577–583.

    Article  CAS  Google Scholar 

  • Ueno, D., Koyama, E., Yamaji, N., & Ma, J. F. (2011). Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. Journal of Experimental Botany, 62(7), 2265–2272(2268).

    Article  CAS  Google Scholar 

  • Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., & Ishikawa, S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60(9), 2677–2688.

    Article  CAS  Google Scholar 

  • Vaculík, M., Landberg, T., Greger, M., Luxová, M., Stoláriková, M., & Lux, A. (2012). Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany, 110(2), 433–443.

    Article  Google Scholar 

  • Xiao, W., Ye, X., Yang, X., Li, T., Zhao, S., & Qi, Z. (2015). Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Ecotoxicology & Environmental Safety, 113c(113C), 439-445.

  • Zanuzzi, A., Faz, A., & Acosta, J. A. (2013). Chemical stabilization of metals in the environment: a feasible alternative for remediation of mine soils. Environmental Earth Sciences, 70(6), 2623–2632.

    Article  CAS  Google Scholar 

  • Zhang, J. T., Dong, Y., & Xi, Y. (2008a). A comparison of SOFM ordination with DCA and PCA in gradient analysis of plant communities in the midst of Taihang Mountains, China. Ecological Informatics, 3(6), 367–374.

    Article  Google Scholar 

  • Zhang, C., Wang, L., Nie, Q., Zhang, W., & Zhang, F. (2008b). Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environmental & Experimental Botany, 62(3), 300–307.

    Article  CAS  Google Scholar 

  • Zhang, Q., Yan, C., Liu, J., Lu, H., Wang, W., Du, J., et al. (2013). Silicon alleviates cadmium toxicity in Avicennia marina (Forsk.) Vierh. seedlings in relation to root anatomy and radial oxygen loss. Marine Pollution Bulletin, 76(1-2), 187–193.

    Article  CAS  Google Scholar 

  • Zhou, H., Zhou, X., Zeng, M., Liao, B. H., Liu, L., Yang, W. T., et al. (2014). Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicology & Environmental Safety, 101(1), 226–232.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2014A020216019), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030310221), and the Dean Fund of Guangdong Academy of Agricultural Sciences (Grant No. 201524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-ying Ai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Lf., Ai, Sy., Wang, Yh. et al. In Situ Field-Scale Remediation of Low Cd-Contaminated Paddy Soil Using Soil Amendments. Water Air Soil Pollut 227, 342 (2016). https://doi.org/10.1007/s11270-016-3041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3041-6

Keywords

Navigation