Skip to main content
Log in

Effects of Mediators for Ligninolytic Enzyme Production and Kinetic Studies on Degradation of Pentachlorobenzene by Trametes versicolor U80

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pentachlorobenzene is one new persistent organic pollutants (POPs) that has been recently added to the Stockholm Convention on Persistent Organic Pollutants. Based on this reason, one treatment having ability to degrade this compound is needed. The microbiological process by using white-rot fungus was used in this experiment. Free cell of Trametes versicolor U80 degraded pentachlorobenzene 43 % in liquid medium at 40 days incubation. The rapid initial uptake of pentachlorobenzene was obtained in the first 20 days. The results based on ionization potential and the partial least square function indicated that both enzymatic systems of lignin peroxidase and P-450 monooxygenase involved in the degradation of pentachlorobenzene. By using addition of Tween 80, MnSO4, and veratryl alcohol, degradation of pentachlorobenzene could be improved. Based on kinetic study, the use of 1 % of Tween 80 showed the highest degradation rate (2.0619/day) and the degradation of pentachlorobenzene by 50 % can be shortened up to 24 days. Application of T. versicolor U80 in soil and bioreactor degraded pentachlorobenzene 43 and 50 % at 40 days, respectively. T. versicolor U80 shows good capability degrading pentachlorobenzene in soil and bioreactor although it is lower than in liquid due to the difference of pollutant accessibility and transfer oxygen. Finally, strain T. versicolor U80 can be proposed as an excellent candidate for remediation application in pentachlorobenzene pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asgher, M., Bhatti, H. N., Ashraf, M., & Legge, R. L. (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19, 771–783.

    Article  CAS  Google Scholar 

  • Bailey, R. E., van Wijk, D., & Thomas, P. C. (2009). Sources and prevalence of pentachlorobenzene in the environment. Chemosphere, 75(5), 555–564.

    Article  CAS  Google Scholar 

  • Cajthaml, T. (2015). Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environmental Microbiology, 17(12), 4822–4834.

    Article  CAS  Google Scholar 

  • Cajthaml, T., & Svobodová, K. (2012). Biodegradation of aromatic pollutants by ligninolytic fungal strains. In S. N. Singh (Ed.), Microbial degradation of xeobiotics (pp. 291–316). Berlin: Springer.

    Chapter  Google Scholar 

  • Christian, V., Shrivastava, R., Shukla, D., Modi, H., & Vyas, B. R. M. (2005). Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Enzyme and Microbial Technology, 36(2), 327–332.

    Article  CAS  Google Scholar 

  • Collins, P. J., Field, J. A., Teunissen, P., & Dobson, A. D. W. (1997). Stabilization of lignin peroxidase in white rot fungi by tryptophan. Applied and Environmental Microbiology, 63(7), 2543–2548.

    CAS  Google Scholar 

  • Fava, F., Berselli, S., Conte, P., Piccolo, A., & Marchetti, L. (2004). Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Biotechnology and Bioengineering, 88, 214–223.

    Article  CAS  Google Scholar 

  • Fujian, X., Hongzhang, C., & Zuohu, L. (2001). Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresource Technology, 80(2), 149–151.

    Article  CAS  Google Scholar 

  • Gao, H. J., & Jiang, X. (2010). Effect of initial concentration on adsorption-desorption characteristics and desorption hysteresis of hexachlorobenzene in soils. Pedosphere, 20(1), 104–110.

    Article  CAS  Google Scholar 

  • Hadibarata, T., & Nor, N. M. (2014). Decolorization and degradation mechanism of Amaranth by Polyporus sp. S133. Bioprocess and Biosystems Engineering, 37(9), 1879–1885.

    Article  CAS  Google Scholar 

  • Hammel, K. E. (1994). Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environmental Health Perspectives, 103, 41–43.

    Article  Google Scholar 

  • Helbling, D. E. (2015). Bioremediation of pesticide-contaminated water resources: the challenge of low concentrations. Current Opinion in Biotechnology, 33, 142–148.

    Article  CAS  Google Scholar 

  • Jamal, F., Qidwai, T., Pandey, P. K., Singh, R., & Singh, S. (2011). Azo and anthraquinone dye decolorization in relation to its molecular structure using soluble Trichosanthes dioica peroxidase supplemented with redox mediator. Catalysis Communication, 12, 1218–1223.

    Article  CAS  Google Scholar 

  • Jiang, X., Martens, D., Schramm, K. W., Kettrup, A., Xu, S. F., & Wang, L. S. (2000). Polychlorinated organic compounds (PCOCs) in waters, suspended solids and sediments of the Yangtse River. Chemosphere, 41, 901–905.

    Article  CAS  Google Scholar 

  • Kamei, I., Sonoki, S., Haraguchi, K., & Kondo, R. (2006). Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Applied Microbiology and Biotechnology, 73, 932–940.

    Article  CAS  Google Scholar 

  • Kengara, F. O., Doerfler, U., Welzl, G., Ruth, B., Munch, J. C., & Schroll, R. (2013). Enhanced degradation of 14C-HCB in two tropical clay soils using multiple anaerobic-aerobic cycles. Environmental Pollution, 173, 168–175.

    Article  CAS  Google Scholar 

  • Leonardi, V., Sasek, V., Petruccioli, M., Annibale, A. D., Erbanova, P., & Cajthaml, T. (2007). Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. International Biodeterioration & Biodegradation, 60, 165–170.

    Article  CAS  Google Scholar 

  • Li, K., Xu, F., & Eriksson, K. E. L. (1999). Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Applied and Environmental Microbiology, 65(6), 2654–2660.

    CAS  Google Scholar 

  • Marco-Urrea, E., & Reddy, C. A. (2012). Degradation of chloro-organic pollutants by white rot fungi. In S. N. Singh (Ed.), Microbial degradation of xenobiotics (pp. 31–66). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Marco-Urrea, E., Perez-Trujillo, M., Caminal, G., & Vicent, T. (2009). Dechlorination of 1,2,3- and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 166, 1141–1147.

    Article  CAS  Google Scholar 

  • Marquez-Rocha, F. J., Hernandez-Rodriguez, V. Z., & Vazquez-Duhalt, R. (2000). Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnology Letter, 22, 469–472.

    Article  CAS  Google Scholar 

  • Matheus, D. R., Bononi, V. L. R., & Machado, K. M. G. (2000). Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. World Journal of Microbiology and Biotechnology, 16(5), 415–421.

    Article  CAS  Google Scholar 

  • Mougin, C., Pericaud, C., Dubroca, J., & Asther, M. (1997). Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium. Soil Biology and Biochemistry, 29(9), 1321–1324.

    Article  Google Scholar 

  • Ruiz-Dueñas, F. J., & Martínez, A. T. (2009). Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology, 2, 164–177.

    Article  Google Scholar 

  • Sari, A. A., Tachibana, S., & Limin, S. G. (2013). Enhancement of ligninolytic activity of Trametes versicolor U97 pre-grown in agricultural residues to degrade DDT in soil. Water, Air, & Soil Pollution, 224(7), 1–9.

    Article  CAS  Google Scholar 

  • Sari, A. A., Kristiani, A., Tachibana, S., Sudiyani, Y., & Abimanyu, H. (2014). Mechanisms and optimization of oil palm empty fruit bunch as a pre-grown source for white-rot fungus to degrade DDT. Journal of Environmental Chemical Engineering, 2(3), 1410–1415.

    Article  Google Scholar 

  • Sari, A. A., Tachibana, S., Hadibarata, & Muryanto, T. (2015). Development of bioreactor systems for decolorization of Reactive Green 19 using white rot fungus. Desalination and Water Treatment, 57(15), 7029–2038.

    Article  Google Scholar 

  • Shary, S., Kapich, A. N., Panisko, E. A., Magnuson, J. K., Cullen, D., & Hammel, K. E. (2008). Differential expression in Phanerochaete chrysosporium of membrane associated proteins relevant to lignin degradation. Applied and Environmental Microbiology, 74, 7252–7257.

    Article  CAS  Google Scholar 

  • Shrivastava, R., Christian, V., & Vyas, B. R. M. (2005). Enzymatic decolorization of sulfonphthalein dyes. Enzyme Microbial Technology, 36, 333–337.

    Article  CAS  Google Scholar 

  • Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25(1), 99–121.

    Article  CAS  Google Scholar 

  • Stella, T., Covino, S., Kresinova, Z., D’Annaibale, A., Petruccioli, M., Cvancarova, M., & Cajthaml, T. (2013). Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: in vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation. Journal of Hazardous Materials, 260, 975–983.

    Article  CAS  Google Scholar 

  • Takagi, K., Iwasaki, A., Kamei, I., Satsuma, K., Yoshioka, Y., & Harada, N. (2009). Aerobic mineralization of hexachlorobenzene by newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD653. Applied and Environmental Microbiology, 75(13), 4452–4458.

    Article  CAS  Google Scholar 

  • Takano, M., Nakamura, M., Nishida, A., & Ishihara, M. (2004). Manganese peroxidase from Phanerochaete crassa WD 1694. Bulletin of FFPRI, 3(1), 7–13.

    CAS  Google Scholar 

  • Vazquez-Duhalt, R., Westlake, D. W. S., & Fedorak, P. M. (1994). Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Applied and Environmental Microbiology, 60(2), 459–466.

    CAS  Google Scholar 

  • Venkatadri, R., & Irvine, R. L. (1990). Effect of agitation on ligninase activity and ligninase production by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 56(9), 2684–2691.

    CAS  Google Scholar 

  • Wells, A., Teria, M., & Eve, T. (2006). Green oxidations with laccase mediator systems. Biochemical Society Transactions, 34, 304–308.

    Article  CAS  Google Scholar 

  • Yamanaka, R., Soares, C. F., Matheus, D. R., & Machado, K. M. (2008). Lignolytic enzymes produced by Trametes villosa ccb176 under different culture conditions. Brazilian Journal of Microbiology, 39(1), 78–84.

    Article  Google Scholar 

  • Zavarzina, A. G., & Zavarzin, A. A. (2006). Laccase and tyrosinase activities in lichens. Microbiology, 75(5), 546–556.

    Article  CAS  Google Scholar 

  • Zhang, X. X., Cheng, S. P., Zhu, C. J., & Sun, S. L. (2006). Microbial PAH degradation in soil: degradation pathways and contributing factors. Pedosphere, 16, 555–565.

    Article  CAS  Google Scholar 

  • Zhang, Y. H., Xu, D., Zhao, X. H., Song, Y., Liu, Y. L., & Lin, H. N. (2016). Biodegradation of two organophosporus pesticides in whole corn silage as affected by the cultured Lactobacillus plantarum. 3 Biotech. doi:10.1007/s13205-016-0364-3.

    Google Scholar 

  • Zhao, Y. C., Zhang, M., Liu, L., Ma, W. J., & Yi, X. Y. (2010). Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. International Journal of Environmental Science and Technology, 7(2), 359–366.

    Article  CAS  Google Scholar 

  • Zheng, Z. M., & Obbard, J. P. (2001). Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium. Journal of Chemical Technology and Biotechnology, 76, 423–429.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Yosi Aristiawan, Research Center for Chemistry, Indonesian Institute of Sciences, for the insightful discussion in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeng Arum Sari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari, A.A., Yasin, H., Tachibana, S. et al. Effects of Mediators for Ligninolytic Enzyme Production and Kinetic Studies on Degradation of Pentachlorobenzene by Trametes versicolor U80. Water Air Soil Pollut 227, 317 (2016). https://doi.org/10.1007/s11270-016-3006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3006-9

Keywords

Navigation