Skip to main content
Log in

Selective Photocatalytic Degradation of Organic Pollutants Using a Water-Insoluble Zn–Schiff Base Complex

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, a novel water-insoluble zinc–Schiff base complex, Zn(II)-N-salicylaldehyde-2-hydroxyanil (abbreviated as Zn-salen), was synthesized and used as a heterogeneous photocatalyst for the activation of molecular oxygen to degrade organic pollutants in aqueous solution under visible light irradiation (λ ≥ 420 nm). The catalyst was characterized by FT-IR, UV–vis spectroscopy, NMR, and MS analysis. Zn-salen displays a selective adsorption and degradation of electropositive organics, such as rhodamine B (RhB), methylene blue (MB), and o-phenylenediamine (OPD). After using cetyl trimethyl ammonium bromide (CTAB) to change sulforhodamine B (SRB) into RhB-like electropositive molecule, the degradation of SRB increased up to 96 % after 4 h of irradiation, indicating that the selectivity arises from the charge interaction between the catalyst and substrates. Zeta potential of Zn-salen also reveals that the catalyst surface is negatively charged in neutral solution, suggesting that the catalyst is selective towards positively charged substrates due to an electrostatic force of attraction. The photocatalyst was active within a wide pH range (pH 3–11) and chemically stable and can be reused over 10 times. In addition, 1O2 and O2· were involved in photocatalytic degradation but O2· appears to be the primary reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed, B., Limem, E., Abdel-Wahab, A., & Nasr, B. (2011). Photo-Fenton treatment of actual agro-industrial wastewaters. Ind Eng Chem Res., 50, 6673–6680.

    Article  CAS  Google Scholar 

  • Ali, M. M., & Sandhya, K. Y. (2016). Selective photodegradation and enhanced photo electrochemical properties of titanium dioxide–graphene composite with exposed (001) facets made by photochemical method. Sol Energ Mat Sol C., 144, 748–757.

    Article  Google Scholar 

  • Ardo, S., Achey, D., Morris, A. J., Abrahamsson, M., & Meyer, G. J. (2011). Non-Nernstian two-electron transfer photocatalysis at metalloporphyrin–TiO2 interfaces. J Am Chem Soc., 133, 16572–16580.

    Article  CAS  Google Scholar 

  • Boukha, Z., González-Prior, J., Rivas, B. D., González-Velasco, J. R., López-Fonseca, R., & Gutiérrez-Ortiz, J. I. (2016). Synthesis, characterization and behavior of Co/hydroxyapatite catalysts in the oxidation of 1,2-dichloroethane. Applied Catalysis B: Environmental, 190, 125–136.

    Article  CAS  Google Scholar 

  • Bozell, J. J., Hames, B. R., & Dimmel, D. R. (1995). Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. Preparation of benzoquinones. J. Org. Chem., 60, 2398–2404.

    Article  CAS  Google Scholar 

  • Buddhadeb, D., Sreyashi, J., Rajesh B., Pratap., Kumar, S., Subratanath K. (2007). Immobilization of copper Schiff base complexes in zeolite matrix: preparation, characterization and catalytic study. Applied Catalysis A: General, 318, 89–94

  • Chen, X., Ma, W. H., Li, J., Wang, Z. H., Chen, C. C., Ji, H. W., & Zhao, J. C. (2011a). Photocatalytic oxidation of organic pollutants catalyzed by an iron complex at biocompatible pH values: using O2 as main oxidant in a Fenton-like reaction. J Phys Chem C., 115, 4089–4095.

    Article  CAS  Google Scholar 

  • Chen, L. W., Ma, J., Li, X. C., Zhang, J., Fang, J. Y., Guan, Y. H., & Xie, P. C. (2011b). Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environ Sci Technol., 45, 3925–3930.

    Article  CAS  Google Scholar 

  • Chen, Y., Zhang, K., & Zuo, Y. (2013). Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions. Science of the Total Environment, 463–464, 802–809.

    Article  Google Scholar 

  • Claudio, P., Fabio, M., Riccardo, P., Domenico, M., Andrei, D., & Sergei, T. (2001). Synthesis and characterisation of tin(IV) and organotin(IV) derivatives 2-{[(2-hydroxyphenyl) imino] methyl} phenol. Inorg Chim Acta., 325, 103–114.

    Article  Google Scholar 

  • Cotanda, P., Lu, A., Patterson, J. P., Petzetakis, N., & O’Reilly, R. K. (2012). Functionalized organocatalytic nanoreactors: hydrophobic pockets for acylation reactions in water. Macromolecules, 45, 2377–2384.

    Article  CAS  Google Scholar 

  • Drozd, D., Szczubiałka, K., Łapok, Ł., Skiba, M., Patel, H., Gorun, S. M., & Nowakowska, M. (2012). Visible light induced photosensitized degradation of acid orange 7 in the suspension of bentonite intercalated with perfluoroalkyl perfluoro phthalocyanine zinc complex. Appl Catal B: Environ., 125, 35–40.

    Article  CAS  Google Scholar 

  • El-Medani, S. M., Ali, O. A. M., & Ramadan, R. M. (2005). Photochemical reactions of group 6 metal carbonyls with N-salicylidene-2-hydroxyaniline and bis-(salicylaldehyde) phenylenediimine. J Mol Struct., 738, 171–177.

    Article  CAS  Google Scholar 

  • Fang, Y. F., Huang, Y. P., Yang, J., Wang, P., & Cheng, G. W. (2011). Unique ability of BiOBr to decarboxylate D-Glu and D-MeAsp in the photocatalytic degradation of microcystin-LR in water. Environ Sci Technol., 45, 1593–1600.

    Article  CAS  Google Scholar 

  • Fatemeh, S. S., & Kamran, A. (2016). Linkers and coordinated solvent molecules; the two effective factors on formation of zinc oxide nanoparticles from metal–organic frameworks. Inorg Chem Commun., 63, 5–10.

    Article  Google Scholar 

  • Gonzalez-Olmos, R., Martin, M. J., Georgi, A., Kopinke, F. D., Oller, I., & Malato, S. (2012). Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Appl Catal B: Environ., 125, 51–58.

    Article  CAS  Google Scholar 

  • Gupta, K. C., Kumar, S. A., & Lin, C. C. (2009). Polymer-supported Schiff base complexes in oxidation reactions. Coord Chem Rev., 253, 1926–1946.

    Article  CAS  Google Scholar 

  • Hu, X. B., Xu, X., Ji, F. Y., & Fan, Z. H. (2009). Preparation and catalytic kinetic of hydrophobic photocatalytic catalysts. J Inorg Mater., 24, 1115–1120.

    Article  CAS  Google Scholar 

  • Huang, Y. P., Li, J., Ma, W. H., Cheng, M. M., Zhao, J. C., & Yu, J. C. (2004). Efficient H2O2 oxidation of organic pollutants catalyzed by supported iron sulfophenylporphyrin under visible light irradiation. J Phys Chem B., 108, 7263–7270.

    Article  CAS  Google Scholar 

  • Huang, Y. P., Ma, W. H., Li, J., Cheng, M. M., Zhao, J. C., Wan, L. J., & Yu, J. C. (2003). A novel β-CD-hemin complex photocatalyst for efficient degradation of organic pollutants at neutral pHs under visible irradiation. J Phys Chem B., 107, 9409–9414.

    Article  CAS  Google Scholar 

  • Kubacka, A., Fernández-García, M., & Colón, G. (2012). Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev., 112, 1555–1614.

    Article  CAS  Google Scholar 

  • Liu, L., Jiang, D. L., McDonald, A., Hao, Y. Q., Millhauser, G. L., & Zhou, F. M. (2011). Copper redox cycling in the prion protein depends critically on binding mode. J Am Chem Soc., 133, 12229–12237.

    Article  CAS  Google Scholar 

  • Liu, S., Peng, J. J., Yang, H., Bai, Y., Li, J. Y., & Lai, G. Q. (2012). Highly efficient and convenient asymmetric hydrosilylation of ketones catalyzed with zinc Schiff base complexes. Tetrahedron Lett., 68, 1371–1375.

    Article  CAS  Google Scholar 

  • Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem., 17, 990–1003.

    Article  CAS  Google Scholar 

  • Marais, E., Klein, R., Antunes, E., & Nyokong, T. (2007). Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes. J Mol Catal A: Chem., 261, 36–42.

    Article  CAS  Google Scholar 

  • Meng, X., Qin, C., Wang, X. L., Su, Z. M., Li, B., & Yang, Q. H. (2011). Chiral salen-metal derivatives of polyoxometalates with asymmetric catalytic and photocatalytic activities. Dalton T., 40, 9964–9966.

    Article  CAS  Google Scholar 

  • Niu, P., Yang, Y., Yu, J. C., Liu, G., & Cheng, H. (2014). Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem. Commun, 50, 10837–10840.

    Article  CAS  Google Scholar 

  • O’Shea, K. E., & Dionysiou, D. D. (2012). Advanced oxidation processes for water treatment. J Phys Chem Lett., 3, 2112–2113.

    Article  Google Scholar 

  • Pinholt, C., Kapp, S. J., Bukrinsky, J. T., Hostrup, S., Frokjaer, S., Norde, W., & Jorgensen, L. (2013). Influence of acylation on the adsorption of GLP-2 to hydrophobic surfaces. Int J Pharm., 440, 63–71.

    Article  CAS  Google Scholar 

  • Qianqian, Z., Mami, I., Masahide, S., Takafumi, M., Ritsu, K., & Masami, F. (2016). Degradation and debromination of bromophenols using a free-base porphyrin and metalloporphyrins as photosensitizers under conditions of visible light irradiation in the absence and presence of humic substances. Appl Catal B: Environ., 183, 61–68.

    Article  Google Scholar 

  • Ryo, N., Shin-ichi, N., & Hiroaki, T. (2015). Visible light-driven selective aerobic oxidation of benzylalcohols to benzaldehydes by a Cu(acac)2−BiVO4-admicelle three-component heterosupramolecular photocatalyst. J Phys Chem C., 119, 11771–11776.

    Article  Google Scholar 

  • Sharma, R. K., Gulati, S., Pandey, A., & Adholeya, A. (2012). Novel, efficient and recyclable silica based organic–inorganic hybrid nickel catalyst for degradation of dye pollutants in a newly designed chemical reactor. Appl Catal B: Environ., 125, 247–258.

    Article  CAS  Google Scholar 

  • Silva, M., Calvete, M. J. F., Gonçalves, N. P. F., Burrows, H. D., Sarakha, M., Fernandes, A., Ribeiro, M. F., Azenha, M. E., & Pereira, M. M. (2012). Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides. J Hazard Mater., 233, 79–88.

    Article  Google Scholar 

  • Sofianou, M. V., Psycharis, V., Boukos, N., Vaimakis, T., Yu, J., Dillertd, R., Bahnemann, D., & Christos, T. (2013). Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Applied Catalysis B: Environmental, 142–143, 761–768.

    Article  Google Scholar 

  • Song, Q., Jia, M. K., Ma, W. H., Fang, Y. F., & Huang, Y. P. (2013). Heterogeneous degradation of toxic organic pollutants by hydrophobic copper-Schiff base complex under visible irradiation. Sci China Chem., 56, 1–8.

    Article  Google Scholar 

  • Song, Q., Ma, W. H., Jia, M. K., David, J., & Huang, Y. P. (2015). Degradation of organic pollutants in waters by a water-insoluble iron(III) Schiff base complex. Appl Catal A Gen., 505, 70–76.

    Article  CAS  Google Scholar 

  • Su, R., Sun, J., Sun, Y. P., Deng, K. J., Cha, D. M., & Wang, D. Y. (2009). Oxidative degradation of dye pollutants over a broad pH range using hydrogen peroxide catalyzed by FePz(dtnCl2)4. Chemosphere., 77, 1146–1151.

    Article  CAS  Google Scholar 

  • Tianyuan, X., Yun, L., Fei, G., Lin, L., & Yuting, O. (2013). Application of response surface methodology for optimization of azocarmine B removal by heterogeneous photo-Fenton process using hydroxy-iron–aluminum pillared bentonite. Appl Surf Sci., 280, 926–932.

    Article  Google Scholar 

  • Tseng, W. J., & Lin, R. D. (2014). BiFeO3/α-Fe2O3 core/shell composite particles for fast and selective removal of methyl orange dye in water. Journal of Colloid and Interface Science, 428, 95–100.

    Article  CAS  Google Scholar 

  • Vijayaraj, A., Prabu, R., Suresh, R., Sivaraj, C., Raaman, N., & Narayanan, V. (2011). New a cyclic Schiff-base copper(II) complexes and their electrochemical, catalytic, and antimicrobial studies. J Coord Chem., 64, 637–650.

    Article  CAS  Google Scholar 

  • Wang, X. L., Chen, N. L., Liu, G. C., Tian, A. X., Sha, X. T., & Ma, K. F. (2015). A series of CdII/ZnII coordination polymers containing helical chains constructed from a “V”-like bis-pyridyl-bis-amide and various dicarboxylates: assembly, structures, photoluminescent and selective photocatalysis. Inorg. Chim. Acta., 432, 128–135.

    Article  CAS  Google Scholar 

  • Wang, S. L., Fang, Y. F., Yang, Y., Liu, J. Z., Deng, A. P., Zhao, X. R., & Huang, Y. P. (2011). Catalysis of organic pollutant photodegradation by metal phthalocyanines immobilized on TiO2@SiO2. Chin Sci Bull., 56, 969–976.

    Article  CAS  Google Scholar 

  • Warren, J. E., Perkins, C. G., Jelfs, K. E., Boldrin, P., Chater, P. A., Miller, G. J., Manning, T. D., Briggs, M. E., Stylianou, K. C., Claridge, J. B., & Rosseinsky, M. J. (2014). Shape selectivity by guest-driven restructuring of a porous material. Angew. Chem. Int. Edn., 53, 4592–4596.

    Article  CAS  Google Scholar 

  • Wu, Q., Lin, S. W., Li, Y. G., & Wang, E. B. (2012). New supramolecular hybrids based on A-type Anderson polyoxometalates and Mn–Schiff-base complexes. Inorg Chim Acta., 382, 139–145.

    Article  CAS  Google Scholar 

  • Xiaopeng, W., Shouqiang, H., Nanwen, Z., Ziyang, L., & Haiping, Y. (2015). Facile synthesis of porous TiO2 photocatalysts using waste sludge as the template. Appl Surf Sci., 359, 917–922.

    Article  Google Scholar 

  • Ye, L., Yang, C., Tian, L., Zan, L., & Peng, T. (2011). Tunable photocatalytic selectivity of fluoropolymer PVDF modified TiO2. Appl Surf Sci., 257, 8072–8077.

    Article  CAS  Google Scholar 

  • Zhang, Z. H., Zhang, M. J., Deng, J., Deng, K. J., Zhang, B. G., Lv, K. L., Sun, J., & Chen, L. Q. (2013). Potocatalytic oxidative degradation of organic pollutant with molecular oxygen activated by a novel biomimetic catalyst ZnPz(dtn-COOH)4. Appl Catal B: Environ., 132, 90–97.

    Article  Google Scholar 

  • Zhao, X., Bu, X., Wu, T., Zheng, S., Wang, L., & Feng, P. (2013). Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nature communications, 4, 2344.

    Google Scholar 

  • Zhao, X. G., Huang, J. G., Wang, B., Bi, Q., Dong, L. L., & Liu, X. J. (2014). Preparation of titanium peroxide and its selective adsorption property on cationic dyes. Appl Surf Sci., 292, 576–582.

    Article  CAS  Google Scholar 

  • Zou, C., Zhang, Z. J., Xu, X., Gong, Q. H., Li, J., & Wu, C. D. (2012). A multifunctional organic–inorganic hybrid structure based on MnIII–porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. J Am Chem Soc., 134, 87–90.

    Article  CAS  Google Scholar 

  • Zuo, Y., & Deng, Y. (1997). Iron (II) catalyzed photochemical decomposition of oxalic acid and generation of H2O2 in atmospheric liquid phases. Chemosphere, 35, 2051–2058.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Nos. 21407092, 21377067, and 21577077) and the Natural Science Foundation for Innovation Group of Hubei Province, China (No. 2015CFA021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Ying-ping.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya, T., Quan, S., Man-ke, J. et al. Selective Photocatalytic Degradation of Organic Pollutants Using a Water-Insoluble Zn–Schiff Base Complex. Water Air Soil Pollut 227, 284 (2016). https://doi.org/10.1007/s11270-016-2995-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2995-8

Keywords

Navigation