Skip to main content
Log in

Remediation of Chromium Toxicity Through Exogenous Salicylic Acid in Rice (Oryza sativa L.)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This work investigates whether and how salicylic acid (SA) alleviates chromium (Cr) toxicity in rice. Addition of SA under Cr stress markedly increased growth parameters, total protein content, and membrane stability but reduced the concentration and translocation of Cr in shoots but not in roots, suggesting that SA does have critical roles in Cr detoxification associated with Cr sequestration in roots. Further, Fe along with the expression of two Fe transporters (OsIRT1, OsNRAMP1) showed no significant changes in roots due to SA supplementation under Cr stress, indicating that regulation of Fe uptake is not involved in Cr reduction in rice plants through SA. At molecular level, OsPCS1 (phytochelatin synthase) and OsMT1 (metallothionein) and OsHMA3 (P-type ATPase 3) transcripts significantly upregulated following SA supplementation under Cr stress, suggesting that these chelating agents may bind to Cr leading to elevated Cr retention in roots. Furthermore, increased CAT, POD, SOD, and GR leading to decreased H2O2 along with elevated metabolites (cysteine, methionine, glutathione, proline, ascorbic acid) in roots implies active involvement of ROS scavenging and plays partial role in SA-mediated alleviation of Cr toxicity in rice plants. These findings will be useful for bioremediation of Cr toxicity in rice and other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akashi, K., Nishimura, N., Ishida, Y., & Yokota, A. (2004). Potent hydroxyl radical scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochemical and Biophysical Research Communications, 323, 72–78.

    Article  CAS  Google Scholar 

  • Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24, 1337–1344.

    Article  CAS  Google Scholar 

  • Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53, 1331–1341.

    Article  CAS  Google Scholar 

  • Anwar, S., Iqbal, M., Raza, S. H., & Iqbal, N. (2013). Efficacy of seed preconditioning with salicylic and ascorbic acid in increasing vigor of rice (Oryza sativa L.) seedling. Pakistan Journal of Botany, 45, 157–162.

    Google Scholar 

  • Chen, J., Zhu, C., Li, L. P., Sun, Z. Y., & Pan, X. B. (2007). Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. Journal of Environmental Sciences, 19(1), 44–49.

    Article  CAS  Google Scholar 

  • Cho, U. H., & Park, J. O. (2000). Mercury-induced oxidative stress in tomato seedlings. Plant Science, 156, 1–9.

    Article  CAS  Google Scholar 

  • Cobbett, C. S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 123(3), 825–832.

    Article  CAS  Google Scholar 

  • Cuypers, A., Smeets, K., Ruytinxm, J., Opdenakker, K., Keunen, E., & Remans, T. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology, 168(4), 309–16.

    Article  CAS  Google Scholar 

  • Dat, J. F., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57, 779–795.

    Article  CAS  Google Scholar 

  • Dixit, G., Singh, A. P., Kumar, A., Mishra, S., Dwivedi, S., Kumar, S., Trivedi, P. K., Pandey, V., & Tripathi, R. D. (2016). Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiology and Biochemistry, 99, 86–96.

    Article  CAS  Google Scholar 

  • Drazic, G., & Mihailovic, N. (2005). Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Science, 168, 511–517.

    Article  CAS  Google Scholar 

  • Dubey, S., Misra, P., Dwivedi, S., Chatterjee, S., Bag, S. K., Mantri, S., Asif, M. H., Rai, A., Kumar, S., Shri, M., Tripathi, P., Tripathi, R. D., Trivedi, P. K., Chakrabarty, D., & Tuli, R. (2010). Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics, 20, 648.

    Article  Google Scholar 

  • Dwivedi, S., Tripathi, R. D., Tripathi, P., Kumar, A., Dave, R., Mishra, S., Singh, R., Sharma, D., Rai, U. N., Chakrabarty, D., Trivedi, P. K., Adhikari, B., Bag, M. K., Dhankher, O. P., & Tuli, R. (2010). Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environmental Science & Technology, 44, 9542–9549.

    Article  CAS  Google Scholar 

  • Eleftheriou, E., Adamakis, I., Panteris, E., & Fatsiou, M. (2015). Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. International Journal of Molecular Sciences, 16, 15852–15871.

    Article  CAS  Google Scholar 

  • Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal. doi:10.1155/2015/756120.

    Google Scholar 

  • Goud, P. B., & Kachole, M. S. (2012). Antioxidant enzyme changes in neem, pigeonpea and mulberry leaves in two stages of maturity. Plant Signaling & Behavior, 7, 1258–62.

    Article  CAS  Google Scholar 

  • Guo, B., Liang, Y. C., Zhu, Y. G., & Zhao, F. J. (2007). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution, 147, 743–749.

    Article  CAS  Google Scholar 

  • Guy, C., Haskell, D., Neven, L., Klein, P., & Smelser, C. (1992). Hydration-state-responsive protein link cold and drought stress in spinach. Planta, 188, 265–270.

    Article  CAS  Google Scholar 

  • Halliwell, B., & Foyer, C. H. (1978). Properties and physiological function of a glutathion reductase purified from spinach leaves by affinity chromatography. Planta, 139, 9–17.

    Article  CAS  Google Scholar 

  • Hayat, S., Khalique, G., Irfan, M., Wani, A. S., Tripathi, B. N., & Ahmad, A. (2012). Physiological changes induced by chromium stress in plants: an overview. Protoplasma., 249(3), 599–611.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 1950.

    Google Scholar 

  • Hsum, Y. T., & Kaom, C. H. (2003). Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regulation, 40(2), 147–155.

    Article  Google Scholar 

  • Huang, J., Zhang, Y., Peng, J. S., Zhong, C., Yi, H. Y., Ow, D. W., & Gong, J. M. (2012). Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiology, 158(4), 1779–88.

    Article  CAS  Google Scholar 

  • Kabir, A. H. (2016). Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress. Plant Biology, 18, 710–719.

    Article  CAS  Google Scholar 

  • Kabir, A. H., Paltridge, N. G., Rossener, U., & Stangoulis, J. C. R. (2013). Mechanisms associated with Fe-deficiency tolerance and signalling in shoots of Pisum sativum L. Physiologia Plantarum, 147(3), 381–395.

    Article  CAS  Google Scholar 

  • Kabir, A. H., Rahman, M. M., Haider, S. A., & Paul, N. K. (2015). Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). Environmental and Experimental Botany, 112, 16–26.

    Article  CAS  Google Scholar 

  • Khan, M. I. K., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 30, 462.

    Google Scholar 

  • Kohler, A., Blaudez, D., Chalot, M., & Martin, F. (2004). Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytologist, 164, 83–93.

    Article  CAS  Google Scholar 

  • Lee, S., Moon, J. S., Ko, T. S., Petros, D., Goldsbrough, P. B., & Korban, S. S. (2003). Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiology, 131, 656–663.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591–92.

    Article  CAS  Google Scholar 

  • Lindberg, S., Landberg, T., & Gregor, M. (2007). Cadmium uptake and interaction with phytochelatins in wheat protoplasts. Plant Physiology and Biochemistry, 45, 47–53.

    Article  CAS  Google Scholar 

  • Ling, H. Q., Bauer, P., Bereczky, Z., Keller, B., & Ganal, M. (2002). The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proceedings of the National Academy of Sciences, 99, 13938–13943.

    Article  CAS  Google Scholar 

  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivar differing in salinity resistance. Annals of Botany, 78, 389–398.

    Article  CAS  Google Scholar 

  • Marentes, E., & Rauser, W. E. (2007). Different proportions of cadmium occur as Cd-binding phytochelatin complexes in plants. Plant Physiology, 131, 291–301.

    CAS  Google Scholar 

  • Miyadate, H., Adachi, S., Hiraizumi, A., Tezuka, K., Nakazawa, N., Kawamoto, T., Kato, K., Kodama, I., Sakurai, K., Takahashi, H., Satoh-Nagasawa, N., Watanabe, A., Fujimura, T., & Akagi, H. (2011). OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 189(1), 190–199.

    Article  CAS  Google Scholar 

  • Mostofa, M. G., & Fujita, M. (2013). Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology, 22(6), 959–73.

    Article  CAS  Google Scholar 

  • Noriega, G., Caggiano, E., Lecube, M. L., Cruz, D. S., Batlle, A., Tomaro, M., & Balestrasse, K. B. (2012). The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. BioMetals, 25, 1155–1165.

    Article  CAS  Google Scholar 

  • Peng, J., & Gong, J. (2014). Vacuolar sequestration capacity and long-distance metal transport in plants. Frontiers in Plant Science, 5, 19.

    Google Scholar 

  • Qiu, B., Zeng, F., Cai, S., Wu, X., Haider, S. I., Wu, F., & Zhang, G. (2013). Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. Journal of Plant Physiology, 15, 772–779.

    Article  Google Scholar 

  • Roosens, N. H., Bernard, C., Leplae, R., & Verbruggen, N. (2004). Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Letters, 577, 9–16.

    Article  CAS  Google Scholar 

  • Satofuka, H., Fukui, T., Takagi, M., Atomi, H., & Imanaka, T. (2001). Metal-binding properties of phytochelatin-related peptides. Journal of Inorganic Biochemistry, 86, 595–602.

    Article  CAS  Google Scholar 

  • Schiavon, M., Wirtz, M., Borsa, P., Quaggiotti, S., Hell, R., & Malagoli, M. (2007). Chromate differentially affects the expression of a high-affinity sulfate transporter and isoforms of components of the sulfate assimilatory pathway in Zea mays (L.). Plant Biology, 9(5), 662–671.

    Article  CAS  Google Scholar 

  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753.

    Article  CAS  Google Scholar 

  • Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11, 229–254.

    Article  CAS  Google Scholar 

  • Singh, A., Dixit, G., Mishra, S., Dwivedi, S., Tiwari, M., Mallick, S., Pandey, V., Trivedi, P. K., Chakrabarty, D., & Tripathi, R. D. (2015). Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Frontiers in Plant Science, 18(6), 340.

    Google Scholar 

  • Sun, M., & Zigman, S. (1978). An improved spectrophotomeric assay for superoxide dismutase based on epinephrine autoxidation. Analytical Biochemistry, 90, 81–89.

    Article  CAS  Google Scholar 

  • Takahashi, R., Ishimaru, Y., Nakanishi, H., & Nishizawa, N. K. (2011). Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signaling & Behavior, 6, 1813–1816.

    Article  CAS  Google Scholar 

  • Tezuka, K., Miyaadte, H., Katou, K., Kodama, I., Matsumoto, S., & Kawamoto, T. (2010). A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theoretical and Applied Genetics, 120, 1175–1182.

    Article  CAS  Google Scholar 

  • Thomine, S., Wang, R., Ward, J. M., Crawford, N. M., & Schroeder, J. I. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences, 25, 4991–6.

    Article  Google Scholar 

  • Thounaojam, T. C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G. D., Sahoo, L., & Panda, S. K. (2012). Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 53, 33–39.

    Article  CAS  Google Scholar 

  • Ueno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M., & Ma, J. F. (2010). Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences, 107(38), 16500–5.

    Article  CAS  Google Scholar 

  • Wang, L. J., & Li, S. H. (2006). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science, 170, 685–694.

    Article  CAS  Google Scholar 

  • Wang, L. J., Chen, S. J., Kong, W. F., Li, S. H., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41, 244–251.

    Article  Google Scholar 

  • Zengin, F. (2014). Exogenous treatment with salicylic acid alleviating copper toxicity in bean seedlings. Proceedings of the National Academy of Sciences, India, 84, 749–755.

    CAS  Google Scholar 

  • Zhang, W. H., Cai, Y., Tu, C., & Ma, Q. L. (2002). Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of The Total Environment, 300, 167–177.

    Article  CAS  Google Scholar 

  • Zhang, L. P., Mehta, S. K., Liu, Z. P., & Yang, Z. M. (2008). Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant and Cell Physiology, 49, 411–419.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are also grateful to DNA Technology, Denmark, for supplying primers on a timely basis. We would like to show our gratitude to Tommy Landberg, Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden, for providing us phytochelatin standards. We are also grateful to BCSIR Laboratories, Rajshahi, for allowing access to real-time PCR system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Humayan Kabir.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huda, A.K.M.N., Swaraz, A.M., Reza, M.A. et al. Remediation of Chromium Toxicity Through Exogenous Salicylic Acid in Rice (Oryza sativa L.). Water Air Soil Pollut 227, 278 (2016). https://doi.org/10.1007/s11270-016-2985-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2985-x

Keywords

Navigation