Skip to main content
Log in

Influence of Low-Level Anionic Surfactant on PES Ultrafiltration Performance: Membrane Fouling and Rejection of Nuclides

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Surfactants always play a special role in wastewater processes due to their amphiphilic properties. The performance of ultrafiltration was investigated for the treatment of wastewater containing low-level anionic surfactant and trace-level nuclides. Results showed that sodium dodecyl benzene sulfonate (SDBS) below the critical micelle concentration (CMC) caused significant effects on membrane fouling and rejection of nuclides. The membrane flux decreased at SDBS concentrations below the CMC but increased at the concentrations near the CMC. The phenomenon was caused by two distinct effects of SDBS, pore blocking by the monomers and enhancement of nuclide scaling caused a decrease in flux, while hydrophilic modification of the membrane surface by micelles caused an increase in flux. The nuclides alone had no significant effect on membrane fouling, but the flux decreased upon an increase in nuclide concentration when coexisting with SDBS. After the addition of low-level SDBS, the rejections of nuclides increased sharply from 20–30 to 60–98 %. The rejections of Sr(II) and Co(II) were higher than those of Ag(I) and Cs(I) due to stronger complexation of SDBS with divalent cations compared with monovalent cations. Deposition of nuclides increased with the addition of SDBS and with increasing of nuclide concentration, resulting in more radioactive solid waste production and more frequent replacement of membrane module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoudia, M., Allal, N., Djennet, A., & Toumi, L. (2003). Dynamic micellar enhanced ultrafiltration: use of anionic (SDS)-nonionic (NPE) system to remove Cr3+ at low surfactant concentration. Journal of Membrane Science, 217(1–2), 181–192.

    Article  CAS  Google Scholar 

  • Asok, A. K., & Jisha, M. S. (2012). Biodegradation of the anionic surfactant linear alkylbenzene sulfonate (LAS) by autochthonous Pseudomonas sp. Water Air and Soil Pollution, 223(8), 5039–5048.

    Article  CAS  Google Scholar 

  • Baudequin, C., Mai, Z., Rakib, M., Deguerry, I., Severac, R., Pabon, M., & Couallier, E. (2014). Removal of fluorinated surfactants by reverse osmosis—role of surfactants in membrane fouling. Journal of Membrane Science, 458, 111–119.

    Article  CAS  Google Scholar 

  • Boussu, K., Kindts, C., Vandecasteele, C., & Van der Bruggen, B. (2007). Surfactant fouling of nanofiltration membranes: measurements and mechanisms. Chemphyschem, 8(12), 1836–1845.

    Article  CAS  Google Scholar 

  • Chen, D., Zhao, X., & Li, F. (2014). Treatment of low level radioactive wastewater by means of NF process. Nuclear Engineering and Design, 278, 249–254.

    Article  CAS  Google Scholar 

  • Chen, D., Zhao, X., Li, F., & Zhang, X. (2016). Influence of surfactant fouling on rejection of trace nuclides and boron by reverse osmosis. Desalination, 377, 47–53.

    Article  CAS  Google Scholar 

  • Childress, A. E., & Deshmukh, S. S. (1998). Effect of humic substances and anionic surfactants on the surface charge and performance of reverse osmosis membranes. Desalination, 118(1–3), 167–174.

    Article  Google Scholar 

  • Crabb, C. (2000). Scoring with surfactants. Chemical Engeering, 107(11), 51–54.

    Google Scholar 

  • El-Abbassi, A., Khayet, M., & Hafidi, A. (2011). Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater. Water Research, 45(15), 4522–4530.

    Article  CAS  Google Scholar 

  • Fernández, E., Benito, J. M., Pazos, C., & Coca, J. (2005). Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions. Journal of Membrane Science, 246(1), 1–6.

    Article  Google Scholar 

  • Fernandez, M., Curutchet, G. and Sanchez, R.M.T. (2014). Removal of humic acid by organo-montmorillonites: influence of surfactant loading and chain length of alkylammonium cations. Water Air and Soil Pollution, 225(6)

  • Gherasim, C.-V., Hancková, K., Palarčík, J., & Mikulášek, P. (2015). Investigation of cobalt(II) retention from aqueous solutions by a polyamide nanofiltration membrane. Journal of Membrane Science, 490, 46–56.

    Article  CAS  Google Scholar 

  • Gherasim, C.-V., & Mikulasek, P. (2014). Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration. Desalination, 343, 67–74.

    Article  CAS  Google Scholar 

  • Gzara, L., & Dhahbi, M. (2001). Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants. Desalination, 137(1–3), 241–250.

    Article  CAS  Google Scholar 

  • Hang, X., Chen, X., Luo, J., Cao, W., & Wan, Y. (2015). Removal and recovery of perfluorooctanoate from wastewater by nanofiltration. Separation and Purification Technology, 145, 120–129.

    Article  CAS  Google Scholar 

  • Huang, J.-H., Shi, L.-J., Zeng, G.-M., Li, X., He, S.-B., Li, F., Xiong, Y.-L., Guo, S.-H., Zhang, D.-M., & Xie, G.-X. (2012). Effects of feed concentration and transmembrane pressure on membrane fouling in Cd2+ removal by micellar-enhanced ultrafiltration. Desalination, 294, 67–73.

    Article  CAS  Google Scholar 

  • Huang, J., Liu, L., Zeng, G., Li, X., Peng, L., Li, F., Jiang, Y., Zhao, Y., & Huang, X. (2014). Influence of feed concentration and transmembrane pressure on membrane fouling and effect of hydraulic flushing on the performance of ultrafiltration. Desalination, 335(1), 1–8.

    Article  CAS  Google Scholar 

  • Kaya, Y., Aydiner, C., Barlas, H., & Keskinler, B. (2006). Nanofiltration of single and mixture solutions containing anionics and nonionic surfactants below their critical micelle concentrations (CMCs). Journal of Membrane Science, 282(1–2), 401–412.

    Article  CAS  Google Scholar 

  • Kishimoto, N., & Kimura, H. (2012). Fouling behaviour of a reverse osmosis membrane by three types of surfactants. Journal of Water Reuse and Desalination, 2(1), 40–46.

    Article  CAS  Google Scholar 

  • Kowalska, I. (2012). Separation of anionic surfactants in a sequential ultrafiltration—ion exchange purification system. Polish Journal of Environmental Studies, 21(3), 677–684.

    CAS  Google Scholar 

  • Kowalska, I., Kabsch-Korbutowicz, M., Majewska-Nowak, K., & Winnicki, T. (2004). Separation of anionic surfactants on ultrafiltration membranes. Desalination, 162, 33–40.

    Article  CAS  Google Scholar 

  • Li, C. W., Liu, C. K., & Yen, W. S. (2006). Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions. Chemosphere, 63(2), 353–358.

    Article  CAS  Google Scholar 

  • Niu, L. X., Zhang, X., Zhao, X., & Hu, H. Y. (2015). EDTA fouling in dead-end ultrafiltration of low level radioactive wastewater. Nuclear Engineering and Design, 295, 276–282.

    Article  CAS  Google Scholar 

  • Patzay, G., Weiser, L., Feil, F., Patek, G. and Schunk, J. (2010). Radioactive wastewater treatment using selective ion exchangers. Proceedings of the 1st International Nuclear and Renewable Energy Conference (INREC 2010), 3 pp. 3

  • Rekab, K., Lepeytre, C., Dunand, M., Dappozze, F., Herrmann, J.-M., & Guillard, C. (2014). H2O2 and/or photocatalysis under UV-C irradiation for the removal of EDTA, a chelating agent present in nuclear waste waters. Applied Catalysis A: General, 488, 103–110.

    Article  CAS  Google Scholar 

  • Samper, E., Rodriguez, M., De la Rubia, M. A., & Prats, D. (2009). Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and Purification Technology, 65(3), 337–342.

    Article  CAS  Google Scholar 

  • Samper, E., Rodriguez, M., Sentana, I., & Prats, D. (2010). Removal of nickel by means of micellar-enhanced ultrafiltration (MEUF) using two anionic surfactants. Water Air and Soil Pollution, 208(1–4), 5–15.

    Article  CAS  Google Scholar 

  • Srisukphun, T., Chiemchaisri, C., Urase, T., & Yamamoto, K. (2010). Foulant interaction and RO productivity in textile wastewater reclamation plant. Desalination, 250(2), 845–849.

    Article  CAS  Google Scholar 

  • Suarez, L., Diez, M. A., & Riera, F. A. (2014). Transport mechanisms of detergent ingredients through ultrafiltration membranes. Separation and Purification Technology, 136, 115–122.

    Article  CAS  Google Scholar 

  • Tang, C. Y., Fu, Q. S., Criddle, C. S., & Leckie, J. O. (2007). Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science & Technology, 41(6), 2008–2014.

    Article  CAS  Google Scholar 

  • Urbanski, R., Goralska, E., Bart, H. J., & Szymanowski, J. (2002). Ultrafiltration of surfactant solutions. Journal of Colloid and Interface Science, 253(2), 419–426.

    Article  CAS  Google Scholar 

  • Wang, W.H., Hoag, G.E., Collins, J.B. and Naidu, R. (2013). Evaluation of surfactant-enhanced in situ chemical oxidation (S-ISCO) in contaminated soil. Water Air and Soil Pollution, 224(12)

  • Zheng, X., Ernst, M., Huck, P. M., & Jekel, M. (2010). Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater. Water Research, 44(18), 5212–5221.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the State Administration of Science, Technology and Industry for National Defense, Changjiang Scholars and Innovative Research Team in University (IRT-13026), and the Science & Technology project of Tsinghua University (Grant No. 2014z21021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Zhang or Xuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Niu, L., Yu, S. et al. Influence of Low-Level Anionic Surfactant on PES Ultrafiltration Performance: Membrane Fouling and Rejection of Nuclides. Water Air Soil Pollut 227, 274 (2016). https://doi.org/10.1007/s11270-016-2984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2984-y

Keywords

Navigation