Skip to main content
Log in

The role of solubility on the rejection of trace organics by nanofiltration membrane: exemplified with disinfection by-products

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Interactions of trace organic compounds (TOrCs) with polymeric nanofiltration (NF) membrane can affect their rejection. It is desirable to investigate whether solubility which depends on the free energy of interaction between these solutes and water correlates with rejection/adsorption and the potential to be incorporated in the partitioning terms of current NF model. A total of ten neutral disinfection by-products (DBPs) were selected as the model compounds for TOrCs to comprehensively investigate the role of solubility on rejection and adsorption. Pearson correlation analysis indicated that the correlation between MW and rejection ratio was highly significant (r = 0.778, p = 0.008) and that between solubility and rejection ratio was moderately significant (r = −0.636, p = 0.48) in a cross-flow system. By fitting Freundlich equation from adsorption isotherm experiment, the adsorption affinity (K f) of DBPs was roughly correlated with their solubility with regard to the comparison of n value with 1. α was then introduced as a parameter of solute-membrane interaction from the perspective of partitioning term in the hydrodynamic model. Exponential relationship can be observed between the solubility and α, demonstrating the possibility of incorporating solubility into the partitioning terms in NF model to accurately predict the rejection of DBPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Amoudi AS (2010) Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: a review. Desalination 259(1–3):1–10

    Article  CAS  Google Scholar 

  • Arsuaga JM, López-Muñoz MJ, Sotto A (2010) Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes. Desalination 250(2):829–832

    Article  CAS  Google Scholar 

  • Artug G, Roosmasari I, Richau K, Hapke J (2007) A comprehensive characterization of commercial nanofiltration membranes. Sep Sci Technol 42(13):2947–2986

    Article  CAS  Google Scholar 

  • Bandini S, Vezzani D (2003) Nanofiltration modeling: the role of dielectric exclusion in membrane characterization. Chem Eng Sci 58(15):3303–3326

    Article  CAS  Google Scholar 

  • Bellona C, Drewes JE, Xu P, Amy G (2004) Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Res 38(12):2795–2809

    Article  CAS  Google Scholar 

  • Botton S, Verliefde ARD, Quach NT, Cornelissen ER (2012) Influence of biofouling on pharmaceuticals rejection in NF membrane filtration. Water Res 46(18):5848–5860

    Article  CAS  Google Scholar 

  • Bowen WR, Mohammad AW (1998) Characterization and prediction of nanofiltration membrane performance—a general assessment. Chem Eng Res Des 76(8):885–893

    Article  CAS  Google Scholar 

  • Bruni L, Bandini S (2008) The role of the electrolyte on the mechanism of charge formation in polyamide nanofiltration membranes. J Membr Sci 308(1–2):136–151

    Article  CAS  Google Scholar 

  • Chalatip R, Chawalit R, Nopawan R (2009) Removal of haloacetic acids by nanofiltration. J Environ Sci 21(1):96–100

    Article  CAS  Google Scholar 

  • Cirja M, Ivashechkin P, Schäffer A, Corvini PFX (2008) Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev Environ Sci Bio 7(1):61–78

    Article  CAS  Google Scholar 

  • Do D. D. (1998). Adsorption analysis: equilibria and kinetics. Imperial College Press, London

  • Doederer K, Farré MJ, Pidou M, Weinberg HS, Gernjak W (2014) Rejection of disinfection by-products by RO and NF membranes: influence of solute properties and operational parameters. J Membr Sci 467:195–205

    Article  CAS  Google Scholar 

  • Dolar D, Drašinac N, Košutić K, Škorić I, Ašperger D (2017) Adsorption of hydrophilic and hydrophobic pharmaceuticals on RO/NF membranes: identification of interactions using FTIR. J Appl Polym Sci 135(5):426–444

    Google Scholar 

  • Dražević E, Košutić K, Kolev V, Freger V (2014) Does hindered transport theory apply to desalination membranes? Environ. Sci. Technol. 48(19):11471–11478

    Article  Google Scholar 

  • Fang J, Deng B (2014) Rejection and modeling of arsenate by nanofiltration: contributions of convection, diffusion and electromigration to arsenic transport. J Membr Sci 453:42–51

    Article  CAS  Google Scholar 

  • Fujioka T, Khan SJ, McDonald JA, Nghiem LD (2014) Nanofiltration of trace organic chemicals: a comparison between ceramic and polymeric membranes. Sep Purif Technol 136:258–264

    Article  CAS  Google Scholar 

  • Glezer V, Harris B, Tal N, Iosefzon B, Lev O (1999) Hydrolysis of haloacetonitriles: linear free energy relationship, kinetics and products. Water Res 33(8):1938–1948

    Article  CAS  Google Scholar 

  • Itoh M, Kunikane S, Magara Y (2001) Evaluation of nanofiltration for disinfection by-products control in drinking water treatment. Water Sup 1(5–6):233–243

    CAS  Google Scholar 

  • Kimura K, Amy G, Drewes J, Watanabe Y (2003) Adsorption of hydrophobic compounds onto NF/RO membranes: an artifact leading to overestimation of rejection. J Membr Sci 221(1–2):89–101

    Article  CAS  Google Scholar 

  • Kiso Y (1986) Factors affecting adsorption of organic solutes on cellulose acetate in an aqueous solution system. Chromatographia 22(1–6):55–58

    Article  CAS  Google Scholar 

  • Kong F-X, Yang H-W, Wang X-M, Xie YF (2014) Rejection of nine haloacetic acids and coupled reverse draw solute permeation in forward osmosis. Desalination 341:1–9

    Article  CAS  Google Scholar 

  • Kong F-X, Yang H-W, Wu Y-Q, Wang X-M, Xie YF (2015) Rejection of pharmaceuticals during forward osmosis and prediction by using the solution–diffusion model. J Membr Sci 476:410–420

    Article  CAS  Google Scholar 

  • Kong F-X, Yang H-W, Wang X-M, Xie YF (2016) Assessment of the hindered transport model in predicting the rejection of trace organic compounds by nanofiltration. J Membr Sci 498:57–66

    Article  CAS  Google Scholar 

  • Kümmerer K. (2008). Pharmaceuticals in the environment: sources, fate, effects and risks. Springer, Berlin

  • Lin Y-L, Lee C-H (2014) Elucidating the rejection mechanisms of PPCPs by nanofiltration and reverse osmosis membranes. Ind Eng Chem Res 53(16):6798–6806

    Article  CAS  Google Scholar 

  • Lopes MP, Matos CT, Pereira VJ, Benoliel MJ, Valério ME, Bucha LB, Rodrigues A, Penetra AI, Ferreira E, Cardoso VV, Reis MAM, Crespo JG (2013) Production of drinking water using a multi-barrier approach integrating nanofiltration: a pilot scale study. Sep Purif Technol 119:112–122

    Article  CAS  Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339(1):69–72

    Article  CAS  Google Scholar 

  • Meylan S, Hammes F, Traber J, Salhi E, von Gunten U, Pronk W (2007) Permeability of low molecular weight organics through nanofiltration membranes. Water Res 41(17):3968–3976

    Article  CAS  Google Scholar 

  • Mickols W (2016) Substantial changes in the transport model of reverse osmosis and nanofiltration by incorporating accurate activity data of electrolytes. Ind Eng Chem Res 55(42):11139–11149

    Article  CAS  Google Scholar 

  • Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254

    Article  CAS  Google Scholar 

  • Nghiem LD, Schäfer AI, Elimelech M (2004) Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. Environ. Sci. Technol. 38(6):1888–1896

    Article  CAS  Google Scholar 

  • Oatley-Radcliffe DL, Williams SR, Ainscough TJ, Lee C, Johnson DJ, Williams PM (2015) Experimental determination of the hydrodynamic forces within nanofiltration membranes and evaluation of the current theoretical descriptions. Sep Purif Technol 149:339–348

    Article  CAS  Google Scholar 

  • Schäfer AI, Akanyeti I, Semião AJC (2011) Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens. Adv Colloid Interfac 164(1–2):100–117

    Article  Google Scholar 

  • Semião AJC, Schäfer AI (2013) Removal of adsorbing estrogenic micropollutants by nanofiltration membranes. Part A—experimental evidence. J Membr Sci 431:244–256

    Article  Google Scholar 

  • Shahmansouri A, Bellona C (2013) Application of quantitative structure–property relationships (QSPRs) to predict the rejection of organic solutes by nanofiltration. Sep Purif Technol 118:627–638

    Article  CAS  Google Scholar 

  • Shahmansouri A, Bellona C (2015) Nanofiltration technology in water treatment and reuse: applications and costs. Water Sci Technol 71(3):309–319

    Article  CAS  Google Scholar 

  • USEPA (1995) Determination of chlorination disinfection byproducts, chlorinated solvents, and halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection (Method 551.1). Office of Research and Development, Cincinnati

  • Van der Bruggen B, Vandecasteele C (2001) Flux decline during nanofiltration of organic components in aqueous solution. Environ. Sci. Technol. 35(17):3535–3540

    Article  CAS  Google Scholar 

  • Van der Bruggen B, Braeken L, Vandecasteele C (2002) Flux decline in nanofiltration due to adsorption of organic compounds. Sep Purif Technol 29(1):23–31

    Article  CAS  Google Scholar 

  • Verliefde ARD, Cornelissen ER, Heijman SGJ, Hoek EMV, Amy GL, Bruggen BVD, van Dijk JC (2009) Influence of solute−membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes. Environ Sci Technol 43(7):2400–2406

    Article  CAS  Google Scholar 

  • Wang J, Dlamini DS, Mishra AK, Pendergast MTM, Wong MCY, Mamba BB, Freger V, Verliefde ARD, Hoek EMV (2014a) A critical review of transport through osmotic membranes. J Membr Sci 454:516–537

    Article  CAS  Google Scholar 

  • Wang X, Mao Y, Tang S, Yang H, Xie YF (2014b) Disinfection byproducts in drinking water and regulatory compliance: a critical review. Front Environ Sci Eng 9(1):3–15

    Article  Google Scholar 

  • Wang X-M, Li B, Zhang T, Li X-Y (2015) Performance of nanofiltration membrane in rejecting trace organic compounds: experiment and model prediction. Desalination 370:7–16

    Article  CAS  Google Scholar 

  • Williams ME, Hestekin JA, Smothers CN, Bhattacharyya D (1999) Separation of organic pollutants by reverse osmosis and nanofiltration membranes: mathematical models and experimental verification. Ind Eng Chem Res 38(10):3683–3695

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Science Foundation of China University of Petroleum, Beijing (No. 2462015YJRC030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-xin Kong.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Fx., Wang, Xm., Yang, Hw. et al. The role of solubility on the rejection of trace organics by nanofiltration membrane: exemplified with disinfection by-products. Environ Sci Pollut Res 24, 18400–18409 (2017). https://doi.org/10.1007/s11356-017-9282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9282-0

Keywords

Navigation