Skip to main content
Log in

Removal of Dye Toxicity from an Aqueous Solution Using an Industrial Strain of Saccharomyces Cerevisiae (Meyen)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The use of synthetic dyes is commonplace in many industries, and the effluent is often dumped into the environment with no prior treatment. The aim of the present study was to analyze the use of an industrial strain of Saccharomyces cerevisiae (Meyen) for the removal of the textile dye Acid Blue 161 from an aqueous solution. Kinetic, isotherm, and thermodynamic models were created to evaluate the biosorption mechanisms. Fourier transfer infrared (FT-IR) spectroscopy was used to characterize and identify possible binding sites. A toxicity test was also performed using Artemia salina to analyze the degree of toxicity of the dye following treatment. The kinetic results demonstrated the occurrence of intraparticle diffusion in the yeast cells as the controlling mechanism of the sorption process. Biosorption followed the Langmuir model, except at pH 8.50, when it fit the Freundlich model. The thermodynamic results demonstrate that the biosorption process is spontaneous and endothermic. The FT-IR analyses confirmed the occurrence of a chemical reaction in acid pH, but physical adsorption only occurred at pH 8.50. The toxicity test showed that the use of the yeast biomass led to the complete removal of toxicity from the dye solution, demonstrating the effectiveness of the biosorption process in the treatment of effluents contaminated with these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida, E. J. R., & Corso, C. R. (2014). Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere, 112, 317–322.

    Article  CAS  Google Scholar 

  • Annadurai, G., Ling, L. Y., & Lee, J. F. (2008). Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. Journal of Hazardous Materials, 152, 337–346.

    Article  CAS  Google Scholar 

  • Araujo, J. C., Assis, J. T., Monine, V. I., & Bertolino, L. C. (2006). Characterization of kaolinite microstructure by X ray diffraction. Materia (Rio de Janeiro), 11, 361–371.

    Article  Google Scholar 

  • Aravindhan, R., Rao, J. R., & Nair, B. U. (2007). Removal of basic yellow dye from aqueous solution by sorption on green algae Caulerpa scalpelliformis. Journal of Hazardous Materials, 142, 68–76.

    Article  CAS  Google Scholar 

  • Attia, A. A., Girgis, B. S., & Fathy, N. A. (2008). Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: batch column studies. Dyes and Pigments, 76, 282–289.

    Article  Google Scholar 

  • Behnajady, M. A., Vahid, B., Modirshahla, N., & Shokri, M. (2006). Evaluation of electrical energy per order (EEO) with kinetic modeling on photooxidative degradation of C.I. acid orange 7 in a tubular continuous-flow photoreactor. Industrial & Engineering Chemistry Research, 45, 553–557.

    Article  CAS  Google Scholar 

  • Boyd, G. E., Adamson, A. W., & Myers, L. S. (1947). The exchange adsorption of ions from aqueous solution by organic zeolites, II, Kinetics. Journal of the American Chemical Society, 69, 2836–2848.

    Article  CAS  Google Scholar 

  • Farah, J. Y., El-Gendy, N. S., & Farahat, L. A. (2007). Biosorption of astrazone blue basic dye from an aqueous solution using dried biomass of Baker’s yeast. Journal of Hazardous Materials, 148, 402–408.

    Article  CAS  Google Scholar 

  • Fat’hi, M. R., Asfaram, A., Hadipour, A., & Roosta, M. (2014). Kinetics and thermodynamics studies for removal of acid blue 129 from aqueous solution by almond shell. Journal of Environmental Health Science & Engineering, 12, 62.

    Article  Google Scholar 

  • Freundlich, H. (1906). Adsorption in solution. Zeitschrift für Physikalische Chemie, 40, 1361–1368.

    Google Scholar 

  • Ghazi Mokri, H. S., Modirshahla, N., Behnajady, M. A., & Vahid, B. (2015). Adsorption of C.I. Acid Red 97 dye from aqueous solution onto walnut shell: kinetics, thermodynamics parameters, isotherms. International Journal of Environmental Science and Technology, 12, 1401–1408.

    Article  CAS  Google Scholar 

  • Gholizadeh, A., Kermani, M., Gholami, M., & Farzadkia, M. (2013). Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study. Journal of Environmental Health Science & Engineering, 11, 29.

    Article  Google Scholar 

  • Gong, R., Zhang, X., Liu, H., Sun, Y., & Liu, B. (2007). Uptake of cationic dyes from aqueous solution by biosorption onto granular kohlrabi peel. Bioresource Technology, 98, 1319–1323.

    Article  CAS  Google Scholar 

  • Guerra, D. L., & Airoldi, C. (2009). The performance of urea-intercalated and delaminated kaolinites-adsorptions kinetics involving cooper and lead. Journal of the Brazilian Chemical Society, 1, 1–12.

    Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70, 115–124.

    Article  CAS  Google Scholar 

  • Immich, A. P. S., Souza, A. A. U., Guelli, S. M. A., & Souza, U. (2009). Removal of remazol blue RR dye from aqueous solutions with neem leaves and evaluation of their acute toxicity with Daphnia magna. Journal of Hazardous Materials, 164, 1580–1585.

    Article  CAS  Google Scholar 

  • Jadhav, J. P., Phugare, S. S., Dhanve, R. S., & Jadhav, S. B. (2010). Rapid biodegradation and decolorization of direct orange 39 (orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH. Biodegradation, 21, 453–463.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption gel oster stoffe. Kung-liga Svenska Vetenskapsakademiens. Handlingar, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surface of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1368.

    Article  CAS  Google Scholar 

  • Li, G., Jiang, Y., Huang, K., Ding, P., & Yao, L. (2008). Kinetics of adsorption of Saccharomyces cerevisiae mandelated dehydrogenase on magnetic Fe3O4-chitosan nanoparticles. Colloids and Surfaces A, 320, 11–18.

    Article  CAS  Google Scholar 

  • Lipke, P. N., & Ovalle, R. (1998). Cell wall architecture in yeast: new structure and new challenge. Journal of Bacteriology, 180, 3735–3740.

    CAS  Google Scholar 

  • McKay, G., Blair, H. S., & Gardner, J. R. (1982). Adsorption of dyes on chitin: equilibrium studies. Journal of Applied Polymer Science, 27, 3043.

    Article  CAS  Google Scholar 

  • Monash, P., & Pugazhenti, G. (2009). Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption, 15, 390–405.

    Article  CAS  Google Scholar 

  • Ngah, W. S. W., Kamari, A., Fatinathan, S., & Ng, P. W. (2006). Adsorption of chromium from aqueous solution using chitosan beads. Adsorption, 12, 249–257.

    Article  CAS  Google Scholar 

  • Parra, A. L., Yhebra, R. S., Sardiñas, I. G., & Buela, L. I. (2001). Comparative study of the assay of Artemia salina and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine, 8, 395–400.

    Article  Google Scholar 

  • Podkoscielny, P., & Nieszporek, K. (2011). Adsorption of phenols from aqueous solutions: equilibria, calorimetry and kinetics of adsorption. Journal of Colloid and Interface Science, 354, 282–291.

    Article  CAS  Google Scholar 

  • Priya, E. S., Selvan, P. S., & Umayal, A. N. (2015). Biodegradation studies on dye effluents and selective remazol dyes by indigenous bacterial species through spectral characterization. Desalination and Water Treatment, 55, 241–251.

    Article  Google Scholar 

  • Saber-Samandari, S., & Heydaripour, J. (2015). Onion membrane: an efficient adsorbent for decoloring of wastewater. Journal of Environmental Health Science & Engineering, 13, 16.

    Article  Google Scholar 

  • Safariková, M., Ptcáková, L., Kibriková, I., & Safariki, I. (2005). Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. Uvarum cells. Chemosphere, 59, 831–835.

    Article  Google Scholar 

  • Sharma, P., Kaur, H., Sharma, M., & Sahore, V. (2011). A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environmental Monitoring and Assessment, 183, 151–195.

    Article  CAS  Google Scholar 

  • Singh, K. P., Mohan, D., Sinha, S., Tondon, G. S., & Gosh, D. (2003). Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Industrial & Engineering Chemistry Research, 42, 1965–1976.

    Article  CAS  Google Scholar 

  • Srinivasan, A., & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: a review. Journal of Environmental Management, 91, 1915–1929.

    Article  CAS  Google Scholar 

  • Suteu, D., Blaga, A. C., Diaconu, M., & Malutan, T. (2013). Biosorption of reactive dye from aqueous media using Saccharomyces cerevisiae biomass. Equilibrium and kinetic study. Central European Journal of Chemistry, 11, 2048–2057.

    CAS  Google Scholar 

  • Toor, A. P., Verma, A., Jotshi, C. K., Bajpai, P. K., & Singh, V. (2006). Photocatalytic degradation of direct yellow 12 dye using UV/TiO, in a shallow pond slurry reactor. Dyes and Pigments, 68, 53–60.

    Article  CAS  Google Scholar 

  • Varó, I., Serrano, R., Navarro, J. C., López, F. J., & Amat, F. (1998). Acute lethal toxcity of the organophosphorous chlorpyrifos to different species and strains of Artemia. Bulletin of Environmental Contamination and Toxicology, 61, 778–785.

    Article  Google Scholar 

  • Vitor, V., & Corso, C. R. (2008). Decolorization of textile dye by Candida albicans isolated from industrial effluents. Journal of Industrial Microbiology and Biotechnology, 35, 1353–1357.

    Article  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–60.

    Google Scholar 

Download references

Acknowledgments

This study received funding from the Brazilian fostering agency Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Dilarri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilarri, G., de Almeida, É.J.R., Pecora, H.B. et al. Removal of Dye Toxicity from an Aqueous Solution Using an Industrial Strain of Saccharomyces Cerevisiae (Meyen). Water Air Soil Pollut 227, 269 (2016). https://doi.org/10.1007/s11270-016-2973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2973-1

Keywords

Navigation