Skip to main content

Advertisement

Log in

In Vitro Biomarker Responses of Earthworm Lumbricus terrestris Exposed to Herbicide Sekator and Phosphate Fertilizer

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Earthworms are important soil macroinvertebrates and are often used in assessing soil pollution. The present study was conducted in order to investigate the effect of two compounds, triple superphosphate (TSP; fertilizer), sekator (herbicide), and their mixture at two agricultural doses on a Lumbricus terrestris population. Neurotoxicity (acetylcholinesterase (AChE)), metabolization (glutathione-S-transferase (GST)), glutathione (GSH), and protein content were evaluated as biomarkers. Treated earthworms with sekator showed a non-significant increase of protein content (p > 0.05). In contrast, protein content increased significantly (p < 0.0001) up to (104.75 ± 4.75 and 109.09 ± 5.4 μg/worm) after 72 h of exposure with TSP and the mixture, respectively. As compared with TSP exposure, sekator in mixture substantially decreased AChE activity. In control series, the GST activities and GSH concentrations remain stable after 72 h while sekator and TSP induced the biomarker responses, which was proportional to exposure time and administered dose. Non-significant correlations were recorded between AChE and GSH, GST and the protein contents in most interactions. The obtained results indicate that application of sekator in mixture with triple superphosphate could have harmful effects on earthworms since it caused significant changes in measured biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aly, M. A., & Schröder, P. (2008). Effect of herbicides on glutathione S-transferases in the earthworm, Eisenia fetida. Environmental Science and Pollution Research International, 15, 143–149.

    Article  CAS  Google Scholar 

  • Badamassi, D. (2006). Les phosphates naturels de Tahoua (éd.), RECA, Niger.

  • Barlett, M. D., Briones, M. J. I., Neilson, R., Schmidt, O., Spurgeon, D., & Creamer, R. E. (2010). A critical review of current methods in earthworm ecology: from individuals to populations. European Journal of Soil Biology, 46, 67–73.

    Article  Google Scholar 

  • Bélanger, D. (2009). Utilisation de la faune marcobenthique comme bioindicateur de la qualité de l’environnement marin cotier, Sherbrooke (ed.), Québec, Canada.

  • Booth, L. H., Happelthwaite, V. J., & Ohallaron, K. (2000). Growth, development and fecundity of the earthworm Aporrectodea calignosa after exposure to two organosphosphates. New Zealand Plant Protection, 53, 221–225.

    Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Calisi, A., Lionetto, M. G., & Schettino, T. (2011). Biomarker response in the earthworm Lumbricus terrestris exposed to chemical pollutants. Science of the Total Environment, 409, 4456–4464.

    Article  CAS  Google Scholar 

  • Calisi, A., Zaccarelli, N., Lionetto, M. G., & Schettino, T. (2013). Integrated biomarker analysis in the earthworm Lumbricus terrestris: application to the monitoring of soil heavy metal pollution. Chemosphere, 90, 2637–2644.

    Article  CAS  Google Scholar 

  • Capowiez, Y., Rault, M., Mazzia, C., & Belzunces, L. (2003). Earthworm behaviour as a biomarker—a case study using imidacloprid. Pedobiologia, 47, 542–547.

    Google Scholar 

  • Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., & Vandenbulcke, F. (2013). Pesticides and earthworms. Agronomy for Sustainable Development, 34, 199–228.

    Article  CAS  Google Scholar 

  • Denoyelle, R., Rault, M., Mazzia, C., Mascle, O., & Capowiez, Y. (2007). Cholinesterase activity as a biomarker of pesticide exposure in Allolobophora chlorotica earthworms living in apple orchards under different management strategies. Environmental Toxicology Chemistry, 26, 2644–2649.

    Article  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–90.

    Article  CAS  Google Scholar 

  • Fonte, S. J., Winsome, T., & Six, J. (2009). Earthworm populations in relation to soil organic matter dynamics and management in California tomato cropping systems. Applied Soil Ecology, 41, 206–214.

    Article  Google Scholar 

  • Gambi, N., Pasteris, A., & Fabbri, E. (2007). Acetylcholinesterase activity in the earthworm Eisenia andrei at different conditions of carbaryl exposure. Comparative Biochemistry and Physiology. C, 145, 678–685.

    Google Scholar 

  • Gastaldi, L., Hankard, P., Peres, G., Canesi, L., Viarengo, A., & Pons, G. (2007). Application of a biomarker battery for the evaluation of the sublethal effects of pollutants in the earthworm Eisenia andrei. Comparative Biochemistry and Physiology. C, 146, 398–405.

    Google Scholar 

  • Gudbrandsen, M., Line, L. E., Aamodt, S., & Stenersen, J. (2007). Short-term pre-exposure increases earthworm tolerance to mercury. European Journal of Soil Biology, 43, 261–267.

    Article  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathion S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7137.

    CAS  Google Scholar 

  • Hans, R. K., Khan, M. A., Farooq, M., & Beg, M. U. (1993). Glutathione-S-transferase activity in an earthworm (Pheretima posthuma) exposed to three insecticides. Soil Biology and Biochemistry, 25, 509–511.

    Article  CAS  Google Scholar 

  • Hayes, J. D., Flanagan, J. U., & Jowsey, I. R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology, 45, 51–88.

    Article  CAS  Google Scholar 

  • Jemec, A., Drobne, D., Tišler, T., Trebše, P., Roš, M., & Sepčić, K. (2007). The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magnatoxicity test. Comparative Biochemistry and Physiology. C, 144, 303–309.

    Google Scholar 

  • Ketterer, B., Coles, B., & Meyer, D. J. (1983). The role of glutathione in detoxication. Environmental Health Perspectives, 49, 59–69.

    Article  CAS  Google Scholar 

  • Khati, W., Ouali, K., Bensouilah, M., Gnassia-barelli, M., & Romeo, M. (2007). Effet du cadmium sur certains bio-marqueurs de stress chez la moule Perna perna du golfe d’Annaba (Algérie) Laboratoire d’Ecobiologie des Milieux Marins et Littoraux- Université d’Annaba. Algérie.

  • Laszczyca, P., Augustyniak, M., Babczynska, A., Bednarska, K., Kafel, A., Migula, P., Wilczek, G., & Witas, I. (2004). Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland). Environment International, 30, 901–910.

    Article  CAS  Google Scholar 

  • Li, X., Luo, Y., Yun, M., Wang, J., & Wang, J. (2010). Effects of 1-methyl-3-octylimidazolium bromide on the anti-oxidant system of earthworm. Chemosphere, 78, 853–85.

    Article  CAS  Google Scholar 

  • Luo, Y., Zang, Y., Zhong, Y., & Kong, Z. (1999). Toxicological study of two novel pesticides on earthworm Eisenia foetida. Chemosphere, 39, 2347–2356.

    Article  CAS  Google Scholar 

  • Maity, S., Roy, S., Chaudhury, S., & Bhattacharya, S. (2008). Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil. Environmental Pollution, 151, 1–7.

    Article  CAS  Google Scholar 

  • Mosleh, Y. Y., Paris-Palacios, S., Couderchet, M., & Vernet, G. (2003). Effects of the herbicide isoproturon on survival, growth rate, and protein content of mature earthworms (Lumbricus terrestris L.) and its fate in the soil. Applied Soil Ecology, 23, 69–77.

    Article  Google Scholar 

  • Mosleh, Y. Y., Paris-Palacios, S., & Biagianti-Risbourg, S. (2006). Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere, 64, 121–128.

    Article  CAS  Google Scholar 

  • OECD (Organization for Economic Co-operation and Development) (1984). Test 207: Earthworm, acute toxicity tests. In: Organization for economic co-operation and development, OECD Guidelines for Testing of Chemicals.

  • Pandey, S., & Singh, D. K. (2004). Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere, 55, 197–205.

    Article  CAS  Google Scholar 

  • Paoletti, M. G., Sommaggio, D., Favretto, M. R., Petruzzelli, G., Pezzarossa, M., & Barbaferi, M. (1998). Earthworms as useful bioindicators of agroecosystem sustainability in orchards and vineyards with different inputs. Applied Soil Ecology, 10, 137–150.

    Article  Google Scholar 

  • Paris-Palacios, S., Biagianti-Risbourg, S., & Vernet, G. (2000). Biochemical and (ultra) structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulphate. Aquatic Toxicology, 50, 109–124.

    Article  CAS  Google Scholar 

  • Rao, J. V., Shilpanjali, D., & Kavitha, P. (2003). Toxic effects of profenofos on tissue acetylcholinesterase and gill morphology in a euryhaline fish, Oreochromis mossambicus. Archives of Toxicology, 77, 227–232.

    CAS  Google Scholar 

  • Reddy, N. C., & Rao, J. V. (2008). Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicology and Environmental Safety, 71, 574–582.

    Article  CAS  Google Scholar 

  • Reinecke, S. A., & Reinecke, A. J. (2007). The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa. Ecotoxicology and Environmental Safety, 66, 244–251.

    Article  CAS  Google Scholar 

  • Rombke, J. J., Rombke, S., & Didden, W. (2005). The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62, 249–265.

    Article  CAS  Google Scholar 

  • Saint-Denis, M., Narbonne, J. F., Arnaud, C., & Ribera, D. (2001). Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effect of lead acetate. Soil Biology and Biochemistry, 33, 395–404.

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez, J. C., Mazzia, C., Capowiez, Y., & Rault, M. (2009). Carboxylesterase activity in earthworm gut contents: potential ecotoxicological implications. Comparative Biochemistry and Physiology. C, 150, 503–511.

    Google Scholar 

  • Schreck, E., Geret, F., Gontier, L., & Treilhou, M. (2008). Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea Caliginosa nocturna. Chemosphere, 71, 1832–1893.

    Article  CAS  Google Scholar 

  • Schreck, E., Geret, F., Gontier, L., & Treilhou, M. (2009). ChE, GST and CAT: evaluation of the efficiency of a combined buffer for protein extraction. Ecotoxicology and Environmental Safety, 72, 1609–1613.

    Article  CAS  Google Scholar 

  • Sizmur, T., & Hodson, M. E. (2009). Do earthworms impact metal mobility and availability in soil? A review. Environmental Pollution, 157, 1981–1989.

    Article  CAS  Google Scholar 

  • Stegeman, J. J., Brouwer, M., Di Giulio, R. T., Forlin, L., Fowler, B. A., Sanders, B. M., & Van Veld, P. A. (1992). Enzyme and protein synthesis as indicators of contaminant exposure and effect. In R. J. Huggett, R. A. Kimerie, P. M. Mehrle, & H. L. Bergman (Eds.), Biomarkers -biochemical, physiological, and histological markers of anthropogenic stress. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Velki, M., & Hackenberger, B. K. (2013). Biomarker responses in earthworm Eisenia andrei exposed to pirimiphos-methyl and deltamethrin using different toxicity tests. Chemosphere, 90, 1216–1226.

    Article  CAS  Google Scholar 

  • Weckberker, G., & Cory, J. G. (1988). Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L1210 cells in vitro. Cancer Letters, 40, 257–264.

    Article  Google Scholar 

  • Xue, Y. G., Gu, X. Y., Wang, X. R., Sun, C., Xu, X. H., Sun, J., & Zhang, B. G. (2009). The hydroxyl radical generation and oxidative stress for the earthworm Eisenia fetida exposed to tetrabromobisphenol A. Ecotoxicology, 18, 693–699.

    Article  CAS  Google Scholar 

  • Yan, T., Teo, L. H., & Sin, Y. M. (1997). Effect of Mercury and lead on tissue Glutathion of the Green Mussel, Perna viridis L. Bulletin of Environmental Contamination and Toxicology, 58, 845–850.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taha Menasria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekahlia, M.N., Tine, S., Menasria, T. et al. In Vitro Biomarker Responses of Earthworm Lumbricus terrestris Exposed to Herbicide Sekator and Phosphate Fertilizer. Water Air Soil Pollut 227, 15 (2016). https://doi.org/10.1007/s11270-015-2712-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2712-z

Keywords

Navigation