Skip to main content
Log in

Stratification of Granular Activated Carbon Filters for Advanced Wastewater Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Advanced wastewater treatment with granular activated carbon (GAC) is a promising option to reduce emissions of organic micropollutants (OMP) into the aquatic environment. Frequent back-washes of the GAC filters are required due to high particle concentration in the treated wastewater but lead to stratification. Differences in adsorption capacities of individual strata are not known. The present study aimed at investigating physical and chemical differences at different filter depths of a stratified GAC filter. Two different commercial products were stratified during repeated filter bed expansions and sectioned into vertical fractions. Bulk densities, grain size distributions and ash contents of the individual fractions differed significantly. Adsorption tests with pulverized GAC from different levels showed great vertical differences in adsorption properties. OMP removals determined in the upper part of a GAC filter therefore cannot be extrapolated downwards. Both physical and chemical vertical heterogeneities with regard to adsorption capacities and residence times at different filter depths should be considered in the filter design, in the monitoring of a GAC filter, and in the interpretation of the GAC filter performance. Good correlations between abatements of UV light absorption and OMP removals were found for the virgin GAC throughout the non-uniform filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altmann, J., Ruhl, A. S., Zietzschmann, F., & Jekel, M. (2014). Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Research, 55, 185–193.

    Article  CAS  Google Scholar 

  • Chaudhary, D. S., Vigneswaran, S., Jegatheesan, V., Ngo, H. H., Moon, H., Shim, W. G., & Kim, S. H. (2003). Granular activated carbon (GAC) adsorption in tertiary wastewater treatment: experiments and models. Water Science and Technology, 47, 113–120.

    CAS  Google Scholar 

  • Corwin, C. J., & Summers, R. S. (2010). Scaling trace organic contaminant adsorption capacity by granular activated carbon. Environmental Science & Technology, 44, 5403–5408.

    Article  CAS  Google Scholar 

  • Corwin, C. J., & Summers, R. S. (2011). Adsorption and desorption of trace organic contaminants from granular activated carbon adsorbers after intermittent loading and throughout backwash cycles. Water Research, 45, 417–426.

    Article  CAS  Google Scholar 

  • Deitz, V. R. (1997). The heterogeneity of commercial granular activated carbons. Carbon, 35, 579–580.

    Article  CAS  Google Scholar 

  • Eggen, R. I. L., Hollender, J., Joss, A., Scharer, M., & Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environmental Science & Technology, 48, 7683–7689.

    Article  CAS  Google Scholar 

  • Frank, J., Ruhl, A. S., & Jekel, M. (2015). Impacts of backwashing on granular activated carbon filters for advanced wastewater treatment. Water Research, 87, 166–174.

    Article  CAS  Google Scholar 

  • Gibert, O., Lefevre, B., Fernandez, M., Bernat, X., Paraira, M., & Pons, M. (2013). Fractionation and removal of dissolved organic carbon in a full-scale granular activated carbon filter used for drinking water production. Water Research, 47, 2821–2829.

    Article  CAS  Google Scholar 

  • Hatt, J. W., Germain, E., & Judd, S. J. (2013). Granular activated carbon for removal of organic matter and turbidity from secondary wastewater. Water Science and Technology, 67, 846–853.

    Article  CAS  Google Scholar 

  • Ho, L., Grasset, C., Hoefel, D., Dixon, M. B., Leusch, F. D. L., Newcombe, G., Saint, C. P., & Brookes, J. D. (2011). Assessing granular media filtration for the removal of chemical contaminants from wastewater. Water Research, 45, 3461–3472.

    Article  CAS  Google Scholar 

  • Hong, S., & Summers, R. S. (2006). Effect of backwashing on activated carbon adsorption using plug flow pore surface diffusion model. Korean Journal of Chemical Engineering, 23, 57–62.

    Article  CAS  Google Scholar 

  • Ifelebuegu, A. O., Lester, J. N., Churchley, J., & Cartmell, E. (2006). Removal of an endocrine disrupting chemical (17 alpha-ethinyloestradiol) from wastewater effluent by activated carbon adsorption: effects of activated carbon type and competitive adsorption. Environmental Technology, 27, 1343–1349.

    Article  CAS  Google Scholar 

  • Jekel, M., Ruhl, A. S., Meinel, F., Zietzschmann, F., Lima, S., Baur, N., Wenzel, M., Gnirß, R., Sperlich, A., Dunnbier, U., Bockelmann, U., Hummelt, D., van Baar, P., Wode, F., Petersohn, D., Grummt, T., Eckhardt, A., Schulz, W., Heermann, A., Reemtsma, T., Seiwert, B., Schlittenbauer, L., Lesjean, B., Miehe, U., Remy, C., Stapf, M., & Mutz, D. (2013). Anthropogenic organic micro-pollutants and pathogens in the urban water cycle: assessment, barriers and risk communication (ASKURIS). Environmental Sciences Europe, 25, 20.

    Article  Google Scholar 

  • Jekel, M., Dott, W., Bergmann, A., Duennbier, U., Gnirss, R., Haist-Gulde, B., Hamscher, G., Letzel, M., Licha, T., Lyko, S., Miehe, U., Sacher, F., Scheurer, M., Schmidt, C. K., Reemtsma, T., & Ruhl, A. S. (2015). Selection of functional organic indicator substances for the anthropogenically influenced water cycle. Chemosphere, 125, 155–167.

    Article  CAS  Google Scholar 

  • Joss, A., Siegrist, H., & Ternes, T. A. (2008). Are we about to upgrade wastewater treatment for removing organic micropollutants? Water Science and Technology, 57, 251–255.

    Article  CAS  Google Scholar 

  • Knappe, D. R. U., Snoeyink, V. L., Roche, P., Prados, M. J., & Bourbigot, M. M. (1999). Atrazine removal by preloaded GAC. Journal American Water Works Association, 91, 97–109.

    CAS  Google Scholar 

  • Li, L., Quinlivan, P. A., & Knappe, D. R. U. (2002). Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon, 40, 2085–2100.

    Article  CAS  Google Scholar 

  • Margot, J., Kienle, C., Magnet, A., Weil, M., Rossi, L., de Alencastro, L. F., Abegglen, C., Thonney, D., Chèvre, N., Schärer, M., & Barry, D. A. (2013). Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Science of the Total Environment, 461–462, 480.

    Article  Google Scholar 

  • Meinel, F., Ruhl, A. S., Sperlich, A., Zietzschmann, F., & Jekel, M. (2015). Pilot-scale investigation of micropollutant removal with granular and powdered activated carbon. Water, Air, & Soil Pollution, 226.

  • Moore, B. C., Cannon, F. S., Westrick, J. A., Metz, D. H., Shrive, C. A., DeMarco, J., & Hartman, D. J. (2001). Changes in GAC pore structure during full-scale water treatment at Cincinnati: a comparison between virgin and thermally reactivated GAC. Carbon, 39, 789–807.

    Article  CAS  Google Scholar 

  • Nowotny, N., Epp, B., von Sonntag, C., & Fahlenkamp, H. (2007). Quantification and modeling of the elimination behavior of ecologically problematic wastewater micropollutants by adsorption on powdered and granulated activated carbon. Environmental Science & Technology, 41, 2050–2055.

    Article  CAS  Google Scholar 

  • Peel, R. G., & Benedek, A. (1980). Attainment of equilibrium in activated carbon isotherm studies. Environmental Science & Technology, 14, 66–71.

    Article  CAS  Google Scholar 

  • Pota, A. A., & Mathews, A. P. (1999). Effects of particle stratification on fixed bed absorber performance. Journal of Environmental Engineering-Asce, 125, 705–711.

    Article  CAS  Google Scholar 

  • Randtke, S. J., & Snoeyink, V. L. (1983). Evaluating GAC adsorptive capacity. Journal American Water Works Association, 75, 406–413.

    CAS  Google Scholar 

  • Rowsell, V. F., Pang, D. S. C., Tsafou, F., & Voulvoulis, N. (2009). Removal of steroid estrogens from wastewater using granular activated carbon: comparison between virgin and reactivated carbon. Water Environment Research, 81, 394–400.

    Article  CAS  Google Scholar 

  • Ruhl, A. S., Altmann, J., Zietzschmann, F., Meinel, F., Sperlich, A., & Jekel, M. (2014a). Integrating micro-pollutant removal by powdered activated carbon into deep bed filtration. Water, Air, & Soil Pollution, 225, 1–11.

    Article  CAS  Google Scholar 

  • Ruhl, A. S., Zietzschmann, F., Hilbrandt, I., Meinel, F., Altmann, J., Sperlich, A., & Jekel, M. (2014b). Targeted testing of activated carbons for advanced wastewater treatment. Chemical Engineering Journal, 257, 184–190.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., von Gunten, U., & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077.

    Article  CAS  Google Scholar 

  • Shpirt, E. A., & Alben, K. T. (1986). Changes in particle-size distributions on a fixed-bed of granular activated carbon. Water Science and Technology, 18, 31–42.

    CAS  Google Scholar 

  • Summers, R. S., Haist, B., Koehler, J., Ritz, J., Zimmer, G., & Sontheimer, H. (1989). The influence of background organic matter on GAC adsorption. Journal American Water Works Association, 81, 66–74.

    CAS  Google Scholar 

  • Yu, Z., Peldszus, S., & Huck, P. M. (2009). Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics. Environmental Science & Technology, 43, 1467–1473.

    Article  CAS  Google Scholar 

  • Zietzschmann, F., Altmann, J., Ruhl, A. S., Dünnbier, U., Dommisch, I., Sperlich, A., Meinel, F., & Jekel, M. (2014a). Estimating organic micro-pollutant reduction potential of activated carbons using UV absorption and carbon characteristics. Water Research, 56, 48–55.

    Article  CAS  Google Scholar 

  • Zietzschmann, F., Worch, E., Altmann, J., Ruhl, A. S., Sperlich, A., Meinel, F., & Jekel, M. (2014b). Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater. Water Research, 65, 297–306.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The investigations within the ASKURIS project (contract 02WRS1278A) and TestTools (02WES1368A) are supported by the Federal Ministry of Education and Research (BMBF) as part of the funding measure RiSKWa (Jekel et al. 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aki S. Ruhl.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruhl, A.S., Zietzschmann, F., Altmann, J. et al. Stratification of Granular Activated Carbon Filters for Advanced Wastewater Treatment. Water Air Soil Pollut 226, 384 (2015). https://doi.org/10.1007/s11270-015-2655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2655-4

Keywords

Navigation