Skip to main content
Log in

Scanning Cadmium Photosynthetic Responses of Elephantopus mollis for Potential Phytoremediation Practices

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Photosynthetic process is a good approach to discriminate cadmium-tolerant species, because it is reported as one of the most sensitive processes. Our goal was to measure Elephantopus mollis Kunth (Asteraceae) tolerance, determining the interference of Cd on the photosynthetic process. For this, a hydroponic experiment design was conducted in nutrition solution with concentrations of 0 (control), 10, 50, and 100 μM of cadmium (Cd). Measures of photosynthesis performance were obtained, for example, gas exchange, photosystem integrity, chlorophyll content, leaf growth rate, root length, and dry weight. In addition, cadmium and zinc concentrations were measured. Furthermore, results were linked to phytoremediation potential. Our specific questions were as follows: (1) Can the photosynthetic apparatus of E. mollis deal with cadmium stress? (2) Is E. mollis able to accumulate cadmium and maintain zinc level? (3) Is E. mollis a tolerant or sensitive species? (4) Can any phytoremediation practice be suggested from these results? Our results showed that E. mollis can deal with cadmium toxicity up to 10 μM Cd. Moreover, this plant is a potential hyperaccumulator, which can accumulate 248 mg Cd kg−1 dry weight. However, at concentrations of 50 and 100 μM Cd, this species was sensitive and cadmium toxicity affected both biochemistry and photochemistry phases of photosynthesis on account of negative changes on gas exchange, fluorescence chlorophyll, and chlorophyll content. Nevertheless, these results did not compromise the research about its tolerance at lower concentrations of cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91, 869–881.

    Article  CAS  Google Scholar 

  • Alkorta, I., Hernandez-Allica, J., Becerril, J., Amezaga, I., Albizu, I., & Garbisu, C. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Bio/Technology, 3, 71–90.

    Article  CAS  Google Scholar 

  • Antonovics, J., Bradshaw, A. D., & Turner, R. G. (1971). Heavy metal tolerance in plants. Advances in Ecological Research, 7, 185.

    Google Scholar 

  • Aravind, P., & Prasad, M. N. V. (2005). Modulation of cadmium-induced oxidative stress 446 in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and 447 glutathione metabolism. Plant Physiology and Biochemistry, 43, 107–116.

    Article  CAS  Google Scholar 

  • Azevedo, H., Pinto, G., Fernandes, J., Loureiro, S., & Santos, C. (2005). Cadmium effects on sunflower, growth and photosynthesis. Journal of Plant Nutrition, 28, 2211–2220.

    Article  CAS  Google Scholar 

  • Azzolini, M. (2008). Restauração ecológica de áreas impactadas por cinzas de carvão mineral, contribuição da mamona (Ricinus communis L.) e respostas da espécie a metais pesados. Tese de Doutorado. Programa de Pós graduação em Botânica, pp.1-181.

  • Baba, A. (2002). Assessment of radioactive contaminants in by-products from Yatagan (Mugla, Turkey) coal-fired power plant. Environmental Geology, 41, 916–921.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1987). Metal tolerance. New Phytologist, 106, 93–111.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  • Baker, A. J., Brooks, M. R., & Reeves, R. (1988). Growing for gold…and copper…and zinc. New Scientist, 117, 44–48.

    Google Scholar 

  • Baszynski, T. (1986). Interference of Cd in functioning of the photosynthetic apparatus of higher plants. Acta Societatis Botanicorum Poloniae, 55(2), 291–304.

    Article  CAS  Google Scholar 

  • Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W., & Verbruggen, N. (2003). Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil, 249, 9–18.

    Article  CAS  Google Scholar 

  • Bischoff, A., Steinger, T., & Muller-Schärer, H. (2010). The importance of plant provenance and genotypic diversity of seed material used for ecological restoration. Restoration Ecology, 18, 338–348.

    Article  Google Scholar 

  • Burzynski, M., & Klobus, G. (2004). Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica, 42, 505–510.

    Article  CAS  Google Scholar 

  • CABI (2014) (Invasive species compendium). http://www.cabi.org/isc/.Queensland Government. http://www.daff.qld.gov.au/plants/weeds-pest-animals-ants/weeds/a-z-listing-of-weeds/photo-guide-to-weeds/tobacco-weed. Accessed 7/7/2014.

  • Cabrera, A.L., Klein, R.M. (1980). Compostas 3. Tribo: Vernonieae. Flora Ilustrada Catarinense, pp. 227–403.

  • Das, P., Samantaray, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: a review. Environmental Pollution, 98(1), 29–36.

    Article  CAS  Google Scholar 

  • Divan Junior, A. M., Oliveira, P. L., Perry, C. T., Atz, V. L., Azzarini-Rostirolad, L. N., & Raya-Rodriguez, M. T. (2009). Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecological Indicators, 9(6), 1156–1162.

    Article  Google Scholar 

  • Ernst, W. H. O. (1996). Schwermetalle. In C. Brunold, A. Ruegsegger, & R. Brandle (Eds.), Stress bei Pflanzen (pp. 191–219). Bern: Haupt-Verlag.

    Google Scholar 

  • Ernst, W. H. O. (2006). Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80(3), 251–274.

    Google Scholar 

  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Eliana, P., Rosales, E. P., Zawoznika, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33–46.

    Article  CAS  Google Scholar 

  • Gulec, N. C., Gunal, G. B., & Erler, A. (2001). Assessment of soil and water contamination around an ash-disposal site: a case study from the Seyıtomer coal-fired power plant in western Turkey. Environmental Geology, 40, 331–344.

    Article  CAS  Google Scholar 

  • Henson, M. T., Wendy, C., & Rutter, M. T. (2013). Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculate. PLoS ONE, 8(5), e63200.

    Article  CAS  Google Scholar 

  • Hoagland, D. (1938). The water-culture method for growing plants without soil (Circular (California Agricultural Experiment Station)) (347th ed.). Berkeley: University of California, College of Agriculture, Agricultural Experiment Station.

    Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 1–32.

    Google Scholar 

  • Hunt, R. (1982). Plant growth curves: the functional approach to plant growth analysis. London: Edward Arnold.

    Google Scholar 

  • IARC. (1993). Beryllium, cadmium, mercury and exposures in the glass manufacturing industry (Vol. 58, pp. 119–238). Lyon: International Agency for Research on Cancer.

    Google Scholar 

  • Kirkham, M. B. (2006). Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19–32.

    Article  CAS  Google Scholar 

  • Knudson, L. L., Tibbilis, T. W., & Edwards, G. E. (1977). Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiology, 60, 606–608.

    Article  CAS  Google Scholar 

  • Krupa, Z., & Baszynski, T. (1995). Some aspects of heavy metals toxicity towards photosynthetic apparatus—direct and indirect effects on light and dark reactions: a review. Acta Physiologiae Plantarum, 17(2), 177–190.

    CAS  Google Scholar 

  • Küpper, H., Küpper, F., & Spiller, M. (1996). Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. Journal of Experimental Botany, 47, 259–266.

    Article  Google Scholar 

  • Küpper, H., Aravind, P., Leitenmaier, B., Trtılek, M., & Setlık, I. (2007). Cadmium-induced inhibition of photosynthesis and long-term acclimation to Cd-stress in the Cd hyperaccumulator Thlaspi caerulescens. New Phytologist, 175, 655–674.

    Article  Google Scholar 

  • Lasat, M. (2002). Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    Article  CAS  Google Scholar 

  • Leimu, R., & Fischer, M. (2008). A meta-analysis of local adaptation in plants. PloS One, 3, e4010.

    Article  Google Scholar 

  • Li, M., Zhang, L. J., Tao, L., & Li, W. (2008). Ecophysiological responses of Jussiaea rapensto cadmium exposure. Aquatic Botany, 88, 347–352.

    Article  CAS  Google Scholar 

  • Li, J. T., Liao, B., Lan, C. Y., Ye, Z. H., Baker, A. J. M., & Shu, W. S. (2010). Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. Journal of Environmental Quality, 39, 1262–1268.

    Article  CAS  Google Scholar 

  • Liu, J., Qua, W., & Kadiiska, M. B. (2009). Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicology and Applied Pharmacology, 238(3), 209–214.

    Article  CAS  Google Scholar 

  • Lorenzi, H., & Matos, F. J. A. (2008). Plantas medicinais no Brasil: nativas e exóticas (2nd ed., p. 544). Nova Odessa: Plantarum.

    Google Scholar 

  • Macnair, M. R. (1987). Heavy metal tolerance in plants: a model evolutionary system. Trends in Ecology and Evolution, 2, 354–359.

    Article  CAS  Google Scholar 

  • Macnair, M. R. (1993). The genetics of metal tolerance in vascular plants. New Phytologist, 124, 541–559.

    Article  CAS  Google Scholar 

  • Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68, 1–13.

    Article  CAS  Google Scholar 

  • Mahieu, S., Soussou, S., Cleyet-Marel, J. C., Brunel, B., Maure, L., Lefebvre, C., & Escarrel, J. (2013). Local adaptation of metallicolous and non-metallicolous Anthyllis vulneraria populations: their utilization in soil restoration. Restoration Ecology, 21(5), 551–559.

    Article  Google Scholar 

  • Mandal, A., & Sengupta, D. (2006). An assessment of soil contamination around coal-based thermal power plant in India. Environmental Geology, 51(3), 409–420.

    Article  CAS  Google Scholar 

  • McCarthy, I., Romero-Puertas, M. C., Palma, J. M., Sandalio, L. M., Corpas, F. J., Gómez, M., & Del Río, L. A. (2001). Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant, Cell and Environment, 24, 1065–1073.

    Article  CAS  Google Scholar 

  • McCutcheon, S. C., & Schnoor, J. L. (Eds.). (2003). Phytoremediation: transformation and control of contaminants. New York: Wiley.

    Google Scholar 

  • McKay, J. K., Christian, C. E., Harrison, S., & Rice, K. J. (2005). “How local is local?” a review of practical and conceptual issues in the genetics of restoration. Restoration Ecology, 13, 432–440.

    Article  Google Scholar 

  • Meyer, C. L., & Verbruggen, N. (2012). The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. New Biotechnology, 30(1), 9–14.

    Article  Google Scholar 

  • Nedunuri, K., Lowell, C., Meade, W., Vonderheide, A., & Shann, J. (2010). Management practices and phytoremediation by native grasses. International Journal of Phytoremediation, 12, 200–214.

    Article  CAS  Google Scholar 

  • Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Science, 59, 315–323.

    Article  CAS  Google Scholar 

  • Oliveira, J. A., Oliva, M. A., & Cambraia, J. (1994a). Effects of cadmium on chlorophyll contents and on peroxidase activity in soybean. Revista Brasileira de Fisiologia Vegetal, 6(2), 97–101.

    CAS  Google Scholar 

  • Oliveira, J. A., Oliva, M. A., Cambraia, J., & Venegas, V. H. A. (1994b). Absorption, accumulation and distribution of cadmium by two soybean cvs. Revista Brasileira de Fisiologia Vegetal, 6(2), 91–95.

    CAS  Google Scholar 

  • Pence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L. D., Lasat, M. M., Garvin, D. F., Eide, D., & Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the United States of America, 97, 4956–4960.

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs plant water status. Plant Journal, 32, 539–548.

    Article  CAS  Google Scholar 

  • Pillar, V. P. (1997). Multivariate exploratory analysis and randomization testing with MULTIV. Coenose, 12, 145–148.

    Google Scholar 

  • Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60(1), 57–72.

    Article  CAS  Google Scholar 

  • Poschenrieder, C., Gunse, B., & Barcelo, J. (1989). Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiology, 90, 1365–1371.

    Article  CAS  Google Scholar 

  • Pourghasemian, N., Ehsanzadeh, P., & Greger, M. (2013). Genotypic variation in safflower (Carthamus spp.) cadmium accumulation and tolerance affected by temperature and cadmium levels. Environmental and Experimental Botany, 87, 218–226.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. (2001). Metals in the environment: analysis by biodiversity (p. 504). New York: Marcel Dekker. 487 p. ISBN 0-58-540412-7.

    Google Scholar 

  • Prasad, M. N. V., & Freitas, H. M. D. (2003). Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 93(1), 285–321.

    Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Sandalio, L. M., Dalurzo, H. C., Gomez, M. C., Romero, P., & Del Rio, L. A. (2001). Cadmium induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115–2212.

    CAS  Google Scholar 

  • Santos, C., Monteiro, M., & Dias, M. C. (2010). Cadmium toxicity in crops: a review. Environmental science, engineering and technology. Novinka: Nova Publishers.

    Google Scholar 

  • Shah, K., Kumar, R. G., Verma, S., & Dubey, R. S. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161(6), 1135–1144.

    Article  CAS  Google Scholar 

  • Shaw, B. P., Sahu, S. K., & Mishra, R. K. (2004). Heavy metal induced oxidative damage in terrestrial plants. In M. N. V. Prasad (Ed.), Heavy metal stress in plants—from biomolecules to ecosystems (2nd ed., pp. 84–126). Narosa: Springer.

    Chapter  Google Scholar 

  • Singh, S., Eapen, S., & D’Souza, S. F. (2006). Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere, 62, 233–246.

    Article  CAS  Google Scholar 

  • Souza, L. A., Piotto, F. A., Nogueirol, R. C., & Azevedo, R. A. (2013). Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Scientia Agricola, 70(4), 290–295.

    Article  CAS  Google Scholar 

  • Tang, Y. T., Qiua, R. L., Zenga, X. Z., Ying, R. R., Yua, F. M., & Zhoua, X. Y. (2009). Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environmental and Experimental Botany, 66, 126–134.

    Article  CAS  Google Scholar 

  • Tran, T. A., & Popova, P. L. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. Turkish Journal of Botany, 37, 1–13.

    CAS  Google Scholar 

  • United States Environmental Protection Agency- US EPA (1986a). Method 3050B-Acid digestion of sediments sludges, soils and oils. Test methods for evaluating solid waste –SW 846. 3 ed. Washington: Office of Solid Waste and Emergency Response. http://www.ehso.com/ehso.php?URL.

  • Van de Mortel, J. E., Schat, H., Moerland, P. D., Loren, V., van Themaat, E., Van Der Ent, S., Blankestijn, H., Ghandilyan, A., Tsiatsiani, S., & Aarts, M. G. (2008). Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 31, 301–324.

    Article  Google Scholar 

  • Wang, Y., Jiang, X., Li, K., Wu, M., Zhang, R., Zhang, L., & Chen, G. (2014). Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals, 27, 389–401.

    Article  CAS  Google Scholar 

  • Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80, 623–633.

    Article  CAS  Google Scholar 

  • Wintermans, J. F. G. M., & De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochimica et Biophysica Acta, 109, 448–453.

    Article  CAS  Google Scholar 

  • Yadav, S. K. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76, 167–179.

    Article  CAS  Google Scholar 

  • Ying, R. R., Qiu, R. L., Tang, Y., Hu, P. J., Qiu, H., Chen, H. R., Shi, T. H., & Morel, J. L. (2010). Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology, 167, 81–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article was written in memory of Marisa Azzolini, who made this paper possible, but could not finish it. The authors are also grateful to people who, in one way or another, helped with the analyses, like Ph.D. Maria Luiza Porto, Ph.D. Vera Lúcia Atz, and Ph.D. Luis Mauro Rosa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Schmidt Silveira.

Additional information

Marisa Azzolini passed away during the preparation of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, F.S., Azzolini, M. & Divan, A.M. Scanning Cadmium Photosynthetic Responses of Elephantopus mollis for Potential Phytoremediation Practices. Water Air Soil Pollut 226, 359 (2015). https://doi.org/10.1007/s11270-015-2625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2625-x

Keywords

Navigation