Skip to main content
Log in

Degradation of γ-Hexachlorocyclohexane Using Carboxymethylcellulose-Stabilized Fe/Ni Nanoparticles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Carboxymethylcellulose (CMC)-stabilized and Ni-doped nanoscale zero valent iron (nZVI) particles (CMC-Fe/Ni) were synthesized to remove γ-hexachlorocyclohexane (γ-HCH) in aqueous solution. Fourier transform infrared spectroscopy results suggested that the CMC molecules were adsorbed onto iron primarily through carboxylate groups by monodentate complexation, and hydroxyl groups were also involved in the interactions between CMC and iron. The adsorbed CMC made the zeta potential of Fe/Ni nanoparticles more negative. At reaction pH of 8.3, the absolute value of zeta potential of the CMC-Fe/Ni was almost twice that of the bare one. The stability of colloidal nanoparticles was greatly enhanced as initial CMC concentration increased from 0 to 0.1 % (w/w) and did not increase further with higher CMC doses. Batch studies showed that 99.9 % of 10 mg/L γ-HCH was removed after 4 h at a mono nZVI loading level of 0.1 g/L, while the γ-HCH could be completely removed in 5 min using CMC-Fe/Ni, which exhibited a 13 times greater k obs as compared to that using bare Fe/Ni. Within 20 h, 60 mg/L γ-HCH was totally removed through 6 cycles of consecutive treatment using CMC-Fe/Ni. GC-MS analysis showed that 3,4,5,6-tetrachlorocyclohexene was the main intermediate and chlorobenzene was the final product when using mono nZVI. When treating by Fe/Ni nanoparticles, 1,2,3,4,5-pentachlorocyclohexene, 3,4,5,6-tetrachlorocyclohexene, and 1,4-dichlorobenzene were formed as intermediates and benzene and chlorobenzene as the final products. Possible degradation pathways were proposed based on the identified intermediates, and dehydrochlorination, dichloroelimination, and hydrogenolysis were involved in dechlorination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal, S., Al-Abed, S. R., & Dionysiou, D. D. (2007). Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs. Environmental Science & Technology, 41(10), 3722–3727. doi:10.1021/es062886y.

    Article  CAS  Google Scholar 

  • Ayob, A., Ismail, N., Tow Teng, T., Zuhairi Abdullah, A., & Mobin Siddique, B. (2012). Characterization of polymer stabilized nano zero valent iron particle by ultrasonic irradiation-assisted method. Journal of Polymer Materials, 29(1), 167.

    CAS  Google Scholar 

  • Bokare, A. D., Chikate, R. C., Rode, C. V., & Paknikar, K. M. (2008). Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Applied Catalysis, B: Environmental, 79(3), 270–278.

    Article  CAS  Google Scholar 

  • Chang, C., Lian, F., & Zhu, L. (2011). Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environmental Pollution, 159(10), 2507–2514. doi:10.1016/j.envpol.2011.06.021.

    Article  CAS  Google Scholar 

  • Cheng, I. F., Fernando, Q., & Korte, N. (1997). Electrochemical dechlorination of 4-chlorophenol to phenol. Environmental Science & Technology, 31(4), 1074–1078. doi:10.1021/es960602b.

    Article  CAS  Google Scholar 

  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212(0), 112–125. doi:10.1016/j.jhazmat.2011.11.073.

    Article  Google Scholar 

  • Dong, T., Luo, H., Wang, Y., Hu, B., & Chen, H. (2011). Stabilization of Fe-Pd bimetallic nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of para-nitrochlorobenzene in water. Desalination, 271(1), 11–19.

    Article  CAS  Google Scholar 

  • Elliott, D. W., Lien, H. L., & Zhang, W. X. (2008). Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. Journal of Environmental Quality, 37(6), 2192–2201. doi:10.2134/jeq2007.0545.

    Article  CAS  Google Scholar 

  • Elliott, D. W., Lien, H. L., & Zhang, W. X. (2009). Degradation of lindane by zero-valent iron nanoparticles. Journal of Environmental Engineering-asce, 135(5), 317–324. doi:10.1061/(asce)0733-9372(2009)135:5(317).

    Article  CAS  Google Scholar 

  • Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35(24), 4922–4926.

    Article  CAS  Google Scholar 

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267(0), 194–205. doi:10.1016/j.jhazmat.2013.12.062.

    Article  CAS  Google Scholar 

  • Grittini, C., Malcomson, M., Fernando, Q., & Korte, N. (1995). Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 29(11), 2898–2900.

    Article  CAS  Google Scholar 

  • He, F., & Zhao, D. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 41(17), 6216–6221.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 46(1), 29–34.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44(7), 2360–2370.

    Article  CAS  Google Scholar 

  • Jit, S., Dadhwal, M., Kumari, H., Jindal, S., Kaur, J., Lata, P., et al. (2011). Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India. Environmental Science and Pollution Research, 18(4), 586–597. doi:10.1007/s11356-010-0401-4.

    Article  CAS  Google Scholar 

  • Johnson, R. L., Nurmi, J. T., O’Brien Johnson, G. S., Fan, D., O’Brien Johnson, R. L., Shi, Z., et al. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent Iron. Environmental Science & Technology, 47(3), 1573–1580. doi:10.1021/es304564q.

    Article  CAS  Google Scholar 

  • Johnson, T. L., Scherer, M. M., & Tratnyek, P. G. (1996). Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 30(8), 2634–2640.

    Article  CAS  Google Scholar 

  • Jones, F., Farrow, J., & Van Bronswijk, W. (1998). An infrared study of a polyacrylate flocculant adsorbed on hematite. Langmuir, 14(22), 6512–6517.

    Article  CAS  Google Scholar 

  • Kadu, B. S., Sathe, Y. D., Ingle, A. B., Chikate, R. C., Patil, K. R., & Rode, C. V. (2011). Efficiency and recycling capability of montmorillonite supported Fe-Ni bimetallic nanocomposites towards hexavalent chromium remediation. Applied Catalysis, B: Environmental, 104(3), 407–414.

    Article  CAS  Google Scholar 

  • Kim, H. J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2009). Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environmental Science & Technology, 43(10), 3824–3830. doi:10.1021/es802978s.

    Article  CAS  Google Scholar 

  • Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., et al. (2014). Characterization of nZVI mobility in a field scale test. Environmental Science & Technology, 48(5), 2862–2869. doi:10.1021/es4044209.

    Article  CAS  Google Scholar 

  • Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Xiong, Z., et al. (2013). A field-falidated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science & Technology, 47(13), 7332–7340. doi:10.1021/es3041412.

    Article  CAS  Google Scholar 

  • Li, D., Müller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3(2), 101–105.

    Article  CAS  Google Scholar 

  • Li, S., Elliott, D. W., Spear, S. T., Ma, L., & Zhang, W. X. (2011). Hexachlorocyclohexanes in the environment: mechanisms of dechlorination. Critical Reviews in Environmental Science and Technology, 41(19), 1747–1792. doi:10.1080/10643389.2010.481592.

    Article  CAS  Google Scholar 

  • Liou, Y. H., Lin, C. J., Weng, S. C., Ou, H. H., & Lo, S. L. (2009). Selective decomposition of aqueous nitrate into nitrogen using iron deposited bimetals. Environmental Science & Technology, 43(7), 2482–2488. doi:10.1021/es802498k.

    Article  CAS  Google Scholar 

  • Liu, W. J., Qian, T. T., & Jiang, H. (2014). Bimetallic Fe nanoparticles: recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical Engineering Journal, 236, 448–463.

    Article  CAS  Google Scholar 

  • Liu, Y., & Lowry, G. V. (2006). Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology, 40(19), 6085–6090. doi:10.1021/es060685o.

    Article  CAS  Google Scholar 

  • Mannetje, A., Coakley, J., Mueller, J. F., Harden, F., Toms, L. M., & Douwes, J. (2012). Partitioning of persistent organic pollutants (POPs) between human serum and breast milk: a literature review. Chemosphere, 89(8), 911–918. doi:10.1016/j.chemosphere.2012.06.049.

    Article  CAS  Google Scholar 

  • Nagpal, V., Bokare, A. D., Chikate, R. C., Rode, C. V., & Paknikar, K. M. (2010). Reductive dechlorination of γ-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles. Journal of Hazardous Materials, 175(1), 680–687.

    Article  CAS  Google Scholar 

  • Parshetti, G. K., & Doong, R. (2009). Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Research, 43(12), 3086–3094. doi:10.1016/j.watres.2009.04.037.

    Article  CAS  Google Scholar 

  • Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environmental Science & Technology, 43(5), 1507–1514. doi:10.1021/es802187d.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Kim, H. J., Tilton, R. D., & Lowry, G. V. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10(5), 795–814.

    Article  CAS  Google Scholar 

  • San Román, I., Alonso, M. L., Bartolome, L., Galdames, A., Goiti, E., Ocejo, M., et al. (2013). Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization. Chemosphere, 93(7), 1324–1332. doi:10.1016/j.chemosphere.2013.07.050.

    Article  Google Scholar 

  • Schlimn, C., & Heitz, E. (1996). Development of a wastewater treatment process: Reductive dehalogenation of chlorinated hydrocarbons by metals. Environmental Progress, 15(1), 38–47. doi:10.1002/ep.670150117.

    Article  Google Scholar 

  • Schrick, B., Blough, J. L., Jones, A. D., & Mallouk, T. E. (2002). Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials, 14(12), 5140–5147.

    Article  CAS  Google Scholar 

  • Schuth, C., & Reinhard, M. (1998). Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water. Applied Catalysis B-environmental, 18(3-4), 215–221. doi:10.1016/s0926-3373(98)00037-x.

    Article  CAS  Google Scholar 

  • Singh, R., Manickam, N., Mudiam, M. K. R., Murthy, R. C., & Misra, V. (2013). An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. Journal of Hazardous Materials, 258, 35–41.

    Article  Google Scholar 

  • Singh, R., Misra, V., Mudiam, M. K. R., Chauhan, L. K. S., & Singh, R. P. (2012). Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions. Journal of Hazardous Materials, 237, 355–364.

    Article  Google Scholar 

  • Sun, J., Feng, J., Liu, Q., & Li, Q. (2010). Distribution and sources of organochlorine pesticides (OCPs) in sediments from upper reach of Huaihe River, East China. Journal of Hazardous Materials, 184(1), 141–146.

    Article  CAS  Google Scholar 

  • Sun, Y. P., Li, X. Q., Cao, J., Zhang, W. X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1–3), 47–56. doi:10.1016/j.cis.2006.03.001.

    Article  CAS  Google Scholar 

  • Sylvestre, J. P., Poulin, S., Kabashin, A. V., Sacher, E., Meunier, M., & Luong, J. H. T. (2004). Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. Journal of Physical Chemistry B, 108(43), 16864–16869. doi:10.1021/jp047134+.

    Article  CAS  Google Scholar 

  • Tosco, T., Petrangeli Papini, M., Cruz Viggi, C., & Sethi, R. (2014). Nanoscale zerovalent iron particles for groundwater remediation: a review. Journal of Cleaner Production, 77(0), 10–21. doi:10.1016/j.jclepro.2013.12.026.

    Article  CAS  Google Scholar 

  • van Staden, J., & Tlowana, S. (2001). Spectrophotometric determination of chloride in mineral and drinking waters using sequential injection analysis. Fresenius' Journal of Analytical Chemistry, 371(3), 396–399.

    Article  Google Scholar 

  • Vijgen, J., Abhilash, P. C., Li, Y. F., Lal, R., Forter, M., Torres, J., et al. (2011). Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of lindane and its waste isomers. Environmental Science and Pollution Research, 18(2), 152–162. doi:10.1007/s11356-010-0417-9.

    Article  CAS  Google Scholar 

  • Vogel, T. M., Criddle, C. S., & McCarty, P. L. (1987). ES&T critical reviews: transformations of halogenated aliphatic compounds. Environmental Science & Technology, 21(8), 722–736.

    Article  CAS  Google Scholar 

  • Walker, K., Vallero, D. A., & Lewis, R. G. (1999). Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environmental Science & Technology, 33(24), 4373–4378. doi:10.1021/es990647n.

    Article  CAS  Google Scholar 

  • Wang, Q., Qian, H., Yang, Y., Zhang, Z., Naman, C., & Xu, X. (2010). Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. Journal of Contaminant Hydrology, 114(1–4), 35–42. doi:10.1016/j.jconhyd.2010.02.006.

    Article  CAS  Google Scholar 

  • Wang, Z. Y., Peng, P. A., & Huang, W. L. (2009). Dechlorination of gamma-hexachlorocyclohexane by zero-valent metallic iron. Journal of Hazardous Materials, 166(2-3), 992–997. doi:10.1016/j.jhazmat.2008.11.106.

    Article  CAS  Google Scholar 

  • Wei, J., Xu, X., Liu, Y., & Wang, D. (2006). Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Research, 40(2), 348–354. doi:10.1016/j.watres.2005.10.017.

    Article  CAS  Google Scholar 

  • Willett, K. L., Ulrich, E. M., & Hites, R. A. (1998). Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environmental Science & Technology, 32(15), 2197–2207.

    Article  CAS  Google Scholar 

  • Wu, N., Fu, L., Su, M., Aslam, M., Wong, K. C., & Dravid, V. P. (2004). Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Letters, 4(2), 383–386.

    Article  CAS  Google Scholar 

  • Xie, Y., Fang, Z., Cheng, W., Tsang, P. E., & Zhao, D. (2014). Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism. Science of the Total Environment, 485, 363–370.

    Article  Google Scholar 

  • Xu, J., & Bhattacharyya, D. (2005). Membrane-based bimetallic nanoparticles for environmental remediation: synthesis and reactive properties. Environmental Progress, 24(4), 358–366. doi:10.1002/ep.10106.

    Article  CAS  Google Scholar 

  • Yuan, S. H., Long, H. Y., Xie, W. J., Liao, P., & Tong, M. (2012). Electrokinetic transport of CMC-stabilized Pd/Fe nanoparticles for the remediation of PCP-contaminated soil. Geoderma, 185, 18–25. doi:10.1016/j.geoderma.2012.03.028.

    Article  Google Scholar 

  • Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5(3-4), 323–332. doi:10.1023/a:1025520116015.

    Article  CAS  Google Scholar 

  • Zhao, C., Xie, H., Zhang, J., Xu, J., & Liang, S. (2013). Spatial distribution of organochlorine pesticides (OCPs) and effect of soil characters: a case study of a pesticide producing factory. Chemosphere, 90(9), 2381–2387.

    Article  CAS  Google Scholar 

  • Zhao, X., Lv, L., Pan, B. C., Zhang, W. M., Zhang, S. J., & Zhang, Q. X. (2011). Polymer-supported nanocomposites for environmental application: a review. Chemical Engineering Journal, 170(2-3), 381–394. doi:10.1016/j.cej.2011.02.071.

    Article  CAS  Google Scholar 

  • Zhuang, Y., Ahn, S., Seyfferth, A. L., Masue-Slowey, Y., Fendorf, S., & Luthy, R. G. (2011). Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environmental Science & Technology, 45(11), 4896–4903. doi:10.1021/es104312h.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by Ministry of Education of China as an innovative research team project (No. IRT13024) and Ministry of Science and Technology (2014CB441104).

Compliance with Ethical Standards

Fundings

This study was funded by Ministry of Education of China as an innovative research team project (No. IRT13024) and Ministry of Science and Technology (2014CB441104).

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

The authors declare that there are no human participants or animals involved in this study.

Informed Consent

The authors declare that the consent to submit has been received explicitly from Jirui Yang (first author) and Hongwen Sun (corresponding author).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Sun, H. Degradation of γ-Hexachlorocyclohexane Using Carboxymethylcellulose-Stabilized Fe/Ni Nanoparticles. Water Air Soil Pollut 226, 280 (2015). https://doi.org/10.1007/s11270-015-2553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2553-9

Keywords

Navigation