Skip to main content
Log in

Removal of Boron from Aqueous Solution by 2,3-Dihydroxybenzaldehyde Modified Silica Gel

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

2,3-Dihydroxybenzaldehyde modified silica gel (SGDHB) was prepared and then used for the removal of boron. Adsorption of boron on the SGDHB was examined with respect to the equilibrium adsorption, kinetics and as a function of pH. Boron is strongly retained on the SGDHB between pH 7 and pH 9. The results indicated that the adsorption equilibrium was well described by the Langmuir equation. The SGDHB exhibited an excellent sorption capacity with 3.812 mmol B/g SGDHB under experimental conditions. The material shows reasonably rapid sorption ability, with boron in 25 mL of 0.01 M H3BO3 solution being removed almost completely within 30 min of contact time with 0.12 g of the modified silica gel. The SGDHB was demonstrated to be an efficient sorbent for the removal of boron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akyuz, E., Imamoglu, M., & Altundag, H. (2013). Selective determination of Cr(VI) by FAAS after solid phase extraction on bis(3-aminopropyl)amine-bonded silica gel. Atomic Spectroscopy, 34, 146–153.

    CAS  Google Scholar 

  • Alan, M., Kara, D., & Fisher, A. (2007). Preconcentration of heavy metals and matrix elimination using silica gel chemically modified with 2,3-dihydroxybenzaldehyde. Separation Science and Technology, 42, 879–895.

    Article  CAS  Google Scholar 

  • Alkan, M., & Doğan, M. (2001). Adsorption of copper(II) onto perlite. Journal of Colloid and Interface Science, 243, 280–291.

    Article  CAS  Google Scholar 

  • Allen, S. J., Mckay, G., & Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280, 322–333.

    Article  CAS  Google Scholar 

  • Al-Muhtaseb, A. A. H., Ibrahim, K. A., Albadarin, A. B., Ali-Khashman, O., Walker, G. M., & Ahmad, M. N. M. (2011). Remediation of phenol-contaminated water by adsorption using poly(methyl methacrylate) (PMMA). Chemical Engineering Journal, 168, 691–699.

    Article  CAS  Google Scholar 

  • Ayers, R.S.(1994). Water quality for agriculture (Report on FAO Irrigating and Drainage, M-56 ISBN, 92-5-102263-1), Rome.

  • Badruk, M., Kabay, N., Demircioglu, M., Mordogan, H., & Ipekoglu, U. (1999a). Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins. I. Batch sorption-elution studies. Separation Science and Technology, 34(13), 2553–2569.

    Article  CAS  Google Scholar 

  • Badruk, M., Kabay, N., Demircioglu, M., Mordogan, H., & Ipekoglu, U. (1999b). Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins. II. Column sorption-elution studies. Separation Science and Technology, 34(15), 2981–2995.

    Article  CAS  Google Scholar 

  • Boncukcuoglu, R., Yilmaz, A. E., Kocakerim, M. M., & Copur, M. (2004). An empirical model for kinetics of boron removal from boron containing wastewaters by ion exchange in a batch reactor. Desalination, 160, 159–l 66.

    Article  CAS  Google Scholar 

  • Cagirdi, D., Altundag, H., Imamoglu, M., & Tuzen, M. (2014). Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry. Journal of AOAC International, 97, 1137–1142.

    Article  CAS  Google Scholar 

  • De Moraes, S. V. M., Brasil, J. L., Milcharek, C. D., Martins, L. C., Laranjo, M. T., Gallas, M. R., Benvenutti, E. V., & Lima, E. C. (2005). Use of 1,3-diaminepropane-3-propyl grafted onto a silica gel as a sorbent for flow-injection spectrophotometric determination of copper (II) in digests of biological materials and natural waters. Spectrochimica Acta Part A, 62, 398–406.

    Article  Google Scholar 

  • Demey, H., Vincent, T., Ruiz, M., Nogueras, M., Sastre, A. M., & Guibal, E. (2014). Boron recovery from seawater with a new low-cost adsorbent material. Chemical Engineering Journal, 254, 463–471.

    Article  CAS  Google Scholar 

  • Fan, J., Qin, Y., Ye, C., Peng, P., & Wu, C. (2008). Preparation of the diphenylcarbazone-functionalized silica gel and its application to on-line selective solid-phase extraction and determination of mercury by flow-injection spectrophotometry. Journal of Hazardous Materials, 150, 343–350.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Review, Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.

    Article  CAS  Google Scholar 

  • Franson, M.A.H. (1995). Standard methods for examination of water and waste water, American Publication Health Associations.

  • Freundlich, H. (1906). Ueber die adsorption in Loesungen. Leipzig: Engelmann.

    Google Scholar 

  • Helfferich, F. (1962). Ion exchange. New York: McGraw-Hill.

    Google Scholar 

  • Ho, Y., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Howe, P. D. (1998). A review of boron effects in the environment. Biological Trace Element Research, 66, 153–166.

    Article  CAS  Google Scholar 

  • Imamoglu, M., & Gunes, V. (2012). Solid phase extraction of Au and Pd by silica gel functionalized with triethylenetetramine for determination by FAAS. Atomic Spectroscopy, 33, 205–211.

    CAS  Google Scholar 

  • Sasaki, K., Qiu, X., Miyawaki, J., Ideta, K., Takamori, H., Moriyama, S., Hirajima, T. (2013). Contribution of boron-specific resins containing N-methylglucamine groups to immobilization of borate/boric acid in a permeable reactive barrier comprising agglomerated MgO. Desalination, 337, 109–116.

  • Isaacs-Paez, E. D., Leyva-Ramos, R., Jacobo-Azuara, A., Martinez-Rosales, J. M., & Flores-Cano, J. V. (2014). Adsorption of boron on calcined AlMg layered double hydroxide from aqueous solutions. Mechanism and effect of operating conditions. Chemical Engineering Journal, 245, 248–257.

    Article  CAS  Google Scholar 

  • Kluczka, J., Korolewicz, T., Zołotajkin, M., Simka, W., & Raczek, M. (2013). A new adsorbent for boron removal from aqueous solutions. Environmental Technology, 34, 1369–1376.

    Article  CAS  Google Scholar 

  • Kunin, R., & Preuss, A. F. (1964). Characterization of a boron-specific ion exchange resin. Industrial & Engineering Chemistry Product Research and Development, 3, 304–306.

    Article  CAS  Google Scholar 

  • Lenntech, Water treatment solutions, http://www.lenntech.com/periodic/elements/b.htm, Accessed 9 July 2014.

  • Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthes, V., & Krimissa, M. (2007). Sorption isotherms: a review on physical bases, modeling and measurement. Applied Geochemistry, 22, 249–275.

    Article  CAS  Google Scholar 

  • Liu, P., Su, Z., Wu, X., & Pu, Q. (2002). Application of isodiphenylthiourea immobilized silica gel to flow injection on-line microcolumn preconcentration and separation coupled with flame atomic absorption spectrometry for interference free determination of trace silver, gold, palladium and platinum in geological and metallurgical samples. Journal of Analytical Atomic Spectrometry, 17, 125–130.

    Article  CAS  Google Scholar 

  • Liu, H., Qing, B., Ye, X., Li, Q., Lee, K., & Wu, Z. (2009). Boron adsorption by composite magnetic particles. Chemical Engineering Journal, 151, 235–240.

    Article  CAS  Google Scholar 

  • Martell, A. E., & Smith, R. M. (1989). Critical stability constants (Vol. 6, p. 398). New York: Plenum Press.

    Google Scholar 

  • McKay, G., & Poots, V. J. P. (1980). Kinetics and diffusion processes in colour removal from effluent using wood as an adsorbent. Journal of Chemical Technology and Biotechnology, 30, 279–292.

    Article  CAS  Google Scholar 

  • McKay, G., Blair, H. S., & Gardner, R. J. (1982). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 27, 3043–3057.

    Article  CAS  Google Scholar 

  • Nishihama, S., Sumiyoshi, Y., Ookubo, T., & Yoshizuka, K. (2013). Adsorption of boron using glucamine-based chelate adsorbents. Desalination, 310, 81–86.

    Article  CAS  Google Scholar 

  • Parsaei, M., Goodarzi, M. S., & Nasef, M. M. (2011). Adsorption study for removal of boron using ion exchange resin in Bach system. 2011 2nd International Conference on Environmental Science and Technology, IPCBEE (Vol. 6, pp. 398–402). Singapore: IACSIT Press.

    Google Scholar 

  • Poslu, K., & Dudeney, A. W. L. (1983). Solvent-extraction of boron with 2-ethyl-1,3-hexanediol and 2-chloro-4-(1,1,3,3-tetramethylbutyl)-6-methylol-phenol in petroleum ether, kerosene and chloroform solutions. Hydrometallurgy, 10, 47–60.

    Article  CAS  Google Scholar 

  • Sanchez-Ramos, S., Medina-Hemandez, M. J., & Sagrado, S. (1998). Flow injection spectrophotometric determination of boron in ceramic materials. Talanta, 45, 835–842.

    Article  CAS  Google Scholar 

  • Schilde, U., & Uhlemann, E. (1992). A simple method for the control of ion-exchange processes with boric acid using specific chelating resins. Reactive Polymers, 18, 155–158.

    Article  CAS  Google Scholar 

  • Senkal, B. F., & Bicak, N. (2003). Polymer supported iminodipropylene glycol functions for removal of boron. Reactive & Functional Polymers, 55, 27–33.

    Article  CAS  Google Scholar 

  • Thakur, N., Kumar, S. A., Shinde, R. N., Pandey, A. K., Kumar, S. D., & Reddy, A. V. R. (2013). Extractive fixed-site polymer sorbent for selective boron removal from natural water. Journal of Hazardous Materials, 260, 1023–1031.

    Article  CAS  Google Scholar 

  • Ting, T. M., Hoshina, H., Seko, N., & Tamada, M. (2013). Removal of boron by boron-selective adsorbent prepared using radiation induced grafting technique. Desalination and Water Treatment, 51, 2602–2608.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Padmesh, T. V. N., Palanivelu, K., & Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassumwightii: application of two-parameter and three parameter isotherm models. Journal of Hazardous Materials, B133, 304–308.

    Article  Google Scholar 

  • Weber, T. W., & Chakravorti, R. K. (1974). Pore and solid diffusion models for fixed-bed adsorbers. AIChE Journal, 20, 228–238.

    Article  CAS  Google Scholar 

  • Yılmaz, A. E., Boncukcuoglu, R., Yılmaz, M. T., & Kocakerim, M. (2005). Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor. Journal of Hazardous Materials, B117, 221–226.

    Article  Google Scholar 

  • Yoshimura, K., Miyazaki, Y., Sawada, S., & Waki, H. (1996). 11 B NMR studies on complexation of borate with linear and crosslinked polysaccharides. Journal of the Chemical Society, Faraday Transactions, 92, 651–656.

    Article  CAS  Google Scholar 

  • Yu, S., Xue, H., Fan, Y., & Shi, R. (2013). Synthesis, characterization of salicylic-HCHO polymeric resin and its evaluation as a boron adsorbent. Chemical Engineering Journal, 219, 327–334.

    Article  CAS  Google Scholar 

  • Yurdakoç, M., Seki, Y., Karahan, S., & Yurdakoç, K. (2005). Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Siral 80. Journal of Colloid and Interface Science, 286, 440–446.

    Article  Google Scholar 

  • Zelmanov, G., & Semiat, R. (2014). Boron removal from water and its recovery using iron (Fe+3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent. Desalination, 333, 107–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Kara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, D. Removal of Boron from Aqueous Solution by 2,3-Dihydroxybenzaldehyde Modified Silica Gel. Water Air Soil Pollut 226, 223 (2015). https://doi.org/10.1007/s11270-015-2461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2461-z

Keywords

Navigation