Skip to main content
Log in

A review of boron effects in the environment

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Boron (B) is a naturally occurring element that is found in the form of borates in the oceans, sedimentary rocks, coal, shale, and in some soils. Borates are released naturally into the atmosphere and aquatic environment from oceans, geothermal steams, and weathering of clay-rich sedimentary rocks. B is also released to a lesser extent from anthropogenic sources. B concentrations in air range from <0.5 to 80 ng/m3 with an average of 20 ng/m3, and in soils from 10 to 300 mg/kg with an average of 30 mg/kg. Concentrations of B in surface freshwaters are typically < 0.1–0.5 mg/L; much higher concentrations are measured in a few areas, depending on the geochemical nature of the drainage catchment. B accumulates in both aquatic and terrestrial plants, but it does not appear to be biomagnified through the food chain.

No observed effect concentrations (NOECs) for aquatic invertebrates tend to be in the range of 6–10 mg B/L with lower values of 1–2 mg/L for community studies. No effect concentrations for fish in natural waters are around 1 mg/L, although lower values have been recorded in reconstituted water. Comparing no effect concentrations with the general ambient environmental levels indicates that the risk to aquatic ecosystems from B is low. In a few B-rich areas, natural levels will be higher; however, there is some indication that organisms may be Actapted to the local conditions.

B is an essential micronutrient for higher plants with interspecies differences in the levels required for optimum growth. In general, there is a small concentration range between deficiency and toxicity; however, toxicity owing to excess B is much less common in the environment than B deficiency. Levels of B in aquatic plants growing in areas receiving B-rich runoff from irrigated fields are higher than dietary concentrations, which cause effects on the growth of young birds in the laboratory; however, the bioavailability in the field of such plant-accumulated B is uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Eisler, Boron hazards to fish, wildlife, and invertebrates: A synoptic review,US Fish Wildl. Serv., Biol. Rep. 85 (1.20) (1990).

  2. L. Butterwick, N. De Oude, and K. Raymond, Safety assessment of boron in aquatic and terrestrial environments,Ecotoxicol. Environ. Saf. 17, 339–371 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. ECETOC, Ecotoxicology of some inorganic borates, European Centre for Ecotoxicology and Toxicology of Chemicals, Special Report No. 11, Brussels, Belgium (1996).

    Google Scholar 

  4. D. L. Anderson, M. E. Kitto, L. McCarthy, and W. H. Zoller, Sources and atmospheric distribution of particulate and gasphase boron,Atmospheric Environ. 28, 1401–1410 (1994).

    Article  CAS  Google Scholar 

  5. S. Goldberg, Reactions of boron with soils,Plant Soil 193, 35–48 (1997).

    Article  CAS  Google Scholar 

  6. J. A. J. Thompson, J. C. Davis, and R. E. Drew, Toxicity, uptake and survey studies of boron in the marine environment,Water Res. 10, 869–875 (1976).

    Article  CAS  Google Scholar 

  7. C. D. Wren, H. R. MacCrimmon, and B. R. Loescher, Examination of bioaccumulation and biomagnification of metals in a precambrian shield lake,Water Air Soil Pollut. 19, 277–291 (1983).

    Article  CAS  Google Scholar 

  8. M. K. Saiki, M. R. Jennings, and W. G. Brumbaugh, Boron, molybdenum, and selenium in aquatic food chains from the lower San Joaquin River and its tributaries,California, Arch. Environ. Contam. Toxicol. 24, 307–319 (1993).

    Article  CAS  Google Scholar 

  9. S. J. Deverel and S. P. Millard, Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California,Environ. Sci. Technol. 22, 697–702 (1988).

    Article  CAS  Google Scholar 

  10. S. D. Dyer and R. J. Caprara, A method for evaluating consumer product ingredient contributions to surface and drinking water: Boron as a test case,Environ. Toxicol. Chem. 16, 2070–2081 (1997).

    Article  CAS  Google Scholar 

  11. W. Guhl, Öologische Aspekte von Bor,SÖFW J. 118, 1159–1168 (1992).

    CAS  Google Scholar 

  12. P. Gerike, W. K. Fischer, and W. Holtmann, Der Einfluβ von Bor auf die aerobe biologische Abwassereinigung,Tenside Deterg. 13, 249–252 (1976).

    CAS  Google Scholar 

  13. W. Bergmann, P. Bruchlos, and G. Marks, Zum toxischen Grenzwert für Bor,Tenside Deterg. 32, 229–237 (1995).

    CAS  Google Scholar 

  14. P. Schöberl and L. Huber, Ökologisch relevante Daten von nichttensidischen Inhaltsstoffen in Waschund Reinigungs-mitteln,Tenside Deterg. 25, 99–107 (1988).

    Google Scholar 

  15. G. Bringmann and R. Kühn, The toxicity of waterborne contaminants towardsDaphnia magna, Z. Wasser Abwasser Forsch. 10, 161–166 (1977) [in German].

    CAS  Google Scholar 

  16. F. M. Gersich, Evaluation of a static renewal chronic toxicity test method forDaphnia magna Straus using boric acid,Environ. Toxicol. Chem. 3, 89–94 (1984).

    CAS  Google Scholar 

  17. K. J. Maier and A. W. Knight, The toxicity of waterborne boron toDaphnia magna andChironomus decorns and the effects of water hardness and sulfate on boron toxicity,Arch. Environ. Contam. Toxicol. 20, 282–287 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. M. A. Lewis and L. C. Valentine, Acute and chronic toxicities of boric acid toDaphnia magna Straus,Bull. Environ. Contam. Toxicol. 27, 309–315 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. S. J. Hamilton, Hazard assessment of inorganics to three endangered fish in the Green River, Utah,Ecotoxicol. Environ. Safety 30, 134–142 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. I. E. Wallen, W. C. Greer, and R. Lasater, Toxicity toGambusia affinis of certain pure chemicals in turbid water,Sewage Ind. Waste. 29, 695–711 (1957).

    CAS  Google Scholar 

  21. S. J. Hamilton and K. J. Buhl, Acute toxicity of boron, molybdenum, and selenium to fry of chinook salmon and coho salmon,Arch. Environ. Contam. Toxicol. 19, 366–373 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. D. Taylor, B. G. Maddock, and G. Mance, The acute toxicity of nine “grey list” metals (arsenic, boron, chromium, copper, lead, nickel, tin, vanadium and zinc) to two marine fish species: dab (Limanda limanda) and grey mullet (Chelon labrosus),Aquatic Toxicol. 7, 135–144 (1985).

    Article  CAS  Google Scholar 

  23. W. J. Birge and J. A. Black, Sensitivity of vertebrate embryos to boron compounds, Report No. EPA 560/1-76-008, US Environmental Protection Agency, Washington DC (1977).

    Google Scholar 

  24. W. J. Birge and J. A. Black, Toxicity of boron to embryonic and larval stages of largemouth bass (Micropterus salmoides) and rainbow trout (Salmo gairdneri), Report to Proctor & Gamble (1981).

  25. J. A. Black, J. B. Barnum, and W. J. Birge, An integrated assessment of the biological effects of boron to the rainbow trout,Chemosphere 26, 1383–1413 (1993).

    Article  CAS  Google Scholar 

  26. W. J. Birge, J. A. Black, A. G. Westerman, T. M. Short, S. B. Taylor, and M. C. Parekh, Toxicity of boron to embryonic and larval stages of rainbow trout (Salmo gairdneri) exposed in reconstituted and natural waters, Report to Proctor & Gamble (1984).

  27. F. T. Bingham, The boron concentration of wild trout streams in California, Report to Proctor & Gamble (1982).

  28. EA, Boron concentrations and rainbow trout populations in seven states in the western United States, EA Engineering, Science, and Technology report to Proctor & Gamble (1994).

  29. U. C. Gupta, ed.,Boron and Its Role in Crop Production, CRC, Boca Raton (1993).

    Google Scholar 

  30. B. Dell, P. H. Brown and R. W. Bell, eds.,Boron in Soils and Plants: Reviews, Plant Soil 193(1–2) (1997).

  31. B. J. Shelp, Physiology and biochemistry of boron in plants, inBoron and Its Role in Crop Production, U. C. Gupta, ed., CRC Boca Raton, pp. 53–85 (1993).

    Google Scholar 

  32. T. Matoh, Boron in plant cell walls,Plant Soil 193, 59–70 (1997).

    Article  CAS  Google Scholar 

  33. U. C. Gupta, Y. W. Jame, C. A. Campbell, A. J. Leyshon, and W. Nicholaichuk, Boron toxicity and deficiency: A review,Can. J. Soil Sci. 65, 381–4109 (1985).

    Article  CAS  Google Scholar 

  34. V. M. Shorrocks, The occurrence and correction of boron deficiency,Plant Soil 193, 121–148 (1997).

    Article  CAS  Google Scholar 

  35. R. O. Nable, G. S. Bañuelos, and J. G. Pauli, Boron toxicity,Plant Soil 193, 181–198 (1997).

    Article  CAS  Google Scholar 

  36. R. Keren and F. T. Bingham, Boron in water, soils, and plants,Adv. Soil Sci. 1, 230–276 (1985).

    Google Scholar 

  37. R. E. Smidt and J. S. Whitton, Note on boron toxicity in a stand of radiata pine in Hawkes Bay,NZ J. Sci. 18, 109–113 (1975).

    CAS  Google Scholar 

  38. P. J. Temple and S. N. Linzon, Boron as a phytotoxic air pollutant,J. Air Pollut. Control Assoc. 26, 498–499 (1976).

    Article  PubMed  CAS  Google Scholar 

  39. F. J. Lang, F. T. Bingham, F. F. Hendrix, and N. L. Crane, Boron deposition on soil and native vegetation from geothermal emissions,J. Environ. Quality 15, 260–265 (1986).

    Article  CAS  Google Scholar 

  40. G. J. Smith and V. P. Anders, Toxic effects of boron on mallard reproduction,Environ. Toxicol. Chem. 8, 943–950 (1989).

    Article  CAS  Google Scholar 

  41. T. R. Stanley, G. J. Smith, D. J. Hoffman, G. H. Heinz, and R. Rosscoe, Effects of boron and selenium on mallard reproduction and duckling growth and survival,Environ. Toxicol. Chem. 15, 1124–1132 (1996).

    CAS  Google Scholar 

  42. D. J. Hoffman, C. J. Sanderson, L. J. LeCaptain, E. Cromartie, and G. W. Pendleton, Interactive effects of boron, selenium, and dietary protein on survival, growth, and physiology in mallard ducklings,Arch. Environ. Contam. Toxicol. 20, 288–294 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. D. J. Hoffman, M. B. Camardese, L. J. LeCaptain, and G. W. Pendleton, Effects of boron on growth and physiology in mallard ducklings,Environ. Toxicol. Chem. 9, 335–346 (1990).

    Article  CAS  Google Scholar 

  44. M. R. Whitworth, G. W. Pendleton, D. J. Hoffman, and M. B. Camardese, Effects of dietary boron and arsenic on the behavior of mallard ducklings,Environ. Toxicol. Chem. 10, 911–916 (1991).

    Article  CAS  Google Scholar 

  45. C. A. Schuler, Impacts of agricultural drainwater and contaminants on wetlands at Kesterson Reservoir, California, MS Thesis, Oregon State University, Corvallis, OR (1987).

    Google Scholar 

  46. R. L. Hothem and H.M. Ohlendorf, Contaminants in foods of aquatic birds at Kesterson Reservoir, California, 1985,Arch. Environ. Contant. Toxicol. 18, 773–786 (1989).

    Article  CAS  Google Scholar 

  47. F. L. Paveglio, C. M. Bunck, and G. H. Heinz, Selenium and boron in aquatic birds from central California,J. Wildl. Manage. 56, 31–42 (1992).

    Article  Google Scholar 

  48. H. M. Ohlendorf, D. J. Hoffman, M. K. Saiki, and T.W. Aldrich, Embryonic mortality and abnormalities of aquatic birds: Apparent impacts of selenium from irrigation drainwater,Sci. Total Environ. 52, 49–63 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howe, P.D. A review of boron effects in the environment. Biol Trace Elem Res 66, 153–166 (1998). https://doi.org/10.1007/BF02783135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783135

Index entries

Navigation