Skip to main content

Advertisement

Log in

Characterisation of Prolonged Deposits of Organic Matter in Infiltration System Inlets and Their Binding with Heavy Metals: a PARAFAC Approach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated and characterised organic matter present in sediment particles deposited in infiltration facilities using an excitation-emission matrix method combined with parallel factor analysis (EEM-PARAFAC). The organic fluorophore identified was correlated with sediment bound metals. The PARAFAC analysis identified three major components. The fluorophore in each of the three components appeared in different locations with different spectral shapes. The maximum fluorescence intensity (F max) observed for each fluorescent component was correlated with seven heavy metals (Cr, Mn, Co, Ni, Cu, Zn and Pb). F max of component 1 displayed a negative relationship with all the metals (correlation coefficient = −0.28 to −0.72), and F max of component 3 showed a positive relationship (0.20 to 0.62), and among them, Cu, Ni and Zn had higher correlation. Our results demonstrate that a PARAFAC approach can help to further elucidate organic matter species, thereby allowing a better understanding of the mobility of elemental species in the deposited sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiken, G. R., McKnight, D. M., Wershaw, R. L. & MacCarthy, P., (1985), Humic substances in soil, sediment, and water: geochemistry, isolation and characterization, John Wiley & Sons.

  • Aryal, R. K., Furumai, H., Nakajima, F. & Hossain, M. A., (2006a). Vertical distribution and speciation of heavy metals in stormwater infiltration facilities: possible heavy metals release to groundwater', 7th International Conference on Urban Drainage Modelling and the 4th International Conference on Water Sensitive Urban Design; Book of Proceedings, Monash University, p. 253.

  • Aryal, R. K., Murakami, M., Furumai, H., Nakajima, F., & Jinadasa, H. K. P. K. (2006b). Prolonged deposition of heavy metals in infiltration facilities and its possible threat to groundwater contamination. Water Science & Technology, 54, 205–212.

    Article  CAS  Google Scholar 

  • Aryal, R. K., Duong, T. T. T., Lee, B.-K., Hossain, M. A., Kandel, D., Kamruzzaman, M., Beecham, S., & Chong, M. N. (2014). Organic matter composition variability in road sediment and its role in binding heavy metals. Sustainable Environment Research, 24, 81–91.

    CAS  Google Scholar 

  • Atanassova, I. (1999). Competitive effect of copper, zinc, cadmium and nickel on ion adsorption and desorption by soil clays. Water Air and Soil Pollution, 113, 115–125.

    Article  CAS  Google Scholar 

  • Baghoth, S., Sharma, S., & Amy, G. (2011). Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation–emission matrices and PARAFAC. Water Research, 45, 797–809.

    Article  CAS  Google Scholar 

  • Baker, A., Inverarity, R., Charlton, M., & Richmond, S. (2003). Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE England. Environmental Pollution, 124, 57–70.

    Article  CAS  Google Scholar 

  • Birdwell, J. E., & Engel, A. S. (2010). Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Organic Geochemistry, 41, 270–280.

    Article  CAS  Google Scholar 

  • Buffle, J., & Filella, M. (1995). Physico-chemical heterogeneity of natural complexants: clarification. Analytica Chimica Acta, 313, 144–150.

    Article  CAS  Google Scholar 

  • Calace, N., Liberatori, A., Petronio, B. M., & Pietroletti, M. (2001). Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals. Environmental Pollution, 113, 331–339.

    Article  CAS  Google Scholar 

  • Cerqueira, B., Covelo, E. F., Andrade, M. L., & Vega, F. A. (2011). Retention and mobility of copper and lead in soils as influenced by soil horizon properties. Pedosphere, 21, 603–614.

    Article  CAS  Google Scholar 

  • Chin, Y.-P., Aiken, G., & O'Loughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science & Technology, 28, 1853–1858.

    Article  CAS  Google Scholar 

  • Christensen, J. B., Jensen, D. L., & Christensen, T. H. (1996). Effect of dissolved organic carbon on the mobility of cadmium, nickel and zinc in leachate polluted groundwater. Water Research, 30, 3037–3049.

    Article  CAS  Google Scholar 

  • Christensen, J. H., Hansen, A. B., Mortensen, J., & Andersen, O. (2005). Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Analytical Chemistry, 77, 2210–2217.

    Article  CAS  Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51, 325–346.

    Article  CAS  Google Scholar 

  • Cory, R. M., & McKnight, D. M. (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science and Technology, 39, 8142–8149.

    Article  CAS  Google Scholar 

  • Davis, J. A. (1984). Complexation of trace metals by adsorbed natural organic matter. Geochimica et Cosmochimica Acta, 48, 679–691.

    Article  CAS  Google Scholar 

  • Dijkstra, J. J., Meeussen, J. C., & Comans, R. N. (2004). Leaching of heavy metals from contaminated soils: an experimental and modeling study. Environmental Science & Technology, 38, 4390–4395.

    Article  CAS  Google Scholar 

  • Elliott, H. A., Liberati, M. R., & Huang, C. P. (1986). Competitive adsorption of heavy metals by soils. Journal of Environmental Quality, 15, 214–219.

    Article  CAS  Google Scholar 

  • Ellis, J. B. (2000). Infiltration systems: A sustainable source-control option for urban stormwater quality management? Journal of the Chartered Institution of Water and Environmental Management, 14, 27–34.

    Article  CAS  Google Scholar 

  • Fuentes, M., González-Gaitano, G., & García-Mina, J. M. (2006). The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Organic Geochemistry, 37, 1949–1959.

    Article  CAS  Google Scholar 

  • Furumai, H., Jinadasa, H. K. P. K., Murakami, M., Nakajima, F. & Aryal, R. K., (2005). 'Model description of storage and infiltration functions of infiltration facilities for urban runoff analysis by a distributed model', pp. 53-60.

  • Guo, W., Xu, J., Wang, J., Wen, Y., Zhuo, J., & Yan, Y. (2010). Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis. Journal of Environmental Sciences, 22, 1728–1734.

    Article  CAS  Google Scholar 

  • Hong, S., Aryal, R., Vigneswaran, S., Johir, M. A. H., & Kandasamy, J. (2012). Influence of hydraulic retention time on the nature of foulant organics in a high rate membrane bioreactor. Desalination, 287, 116–122.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Furumai, H., Nakajima, F., & Aryal, R. K. (2007). Heavy metals speciation in soakaways sediment and evaluation of metal retention properties of surrounding soil. Water Science & Technology, 56, 81–89.

    Article  CAS  Google Scholar 

  • Hua, B., Dolan, F., McGhee, C., Clevenger, T. E., & Deng, B. (2007). Water-source characterization and classification with fluorescence EEM spectroscopy: PARAFAC analysis. International Journal of Environmental Analytical Chemistry, 87, 135–147.

    Article  CAS  Google Scholar 

  • Jalali, M., & Moradi, F. (2013). Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils. Environmental Monitoring and Assessment, 185, 8831–8846.

    Article  CAS  Google Scholar 

  • Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment, 209, 27–39.

    Article  CAS  Google Scholar 

  • Klapper, L., McKnight, D. M., Fulton, J. R., Blunt-Harris, E. L., Nevin, K. P., Lovley, D. R., & Hatcher, P. G. (2002). Fulvic Acid Oxidation State Detection Using Fluorescence Spectroscopy. Environmental Science & Technology, 36, 3170–3175.

    Article  CAS  Google Scholar 

  • Luo, X. S., Yu, S., & Li, X. D. (2012). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry, 27, 995–1004.

    Article  CAS  Google Scholar 

  • Matthews, B. J. H., Jones, A. C., Theodorou, N. K., & Tudhope, A. W. (1996). Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Marine Chemistry, 55, 317–332.

    Article  CAS  Google Scholar 

  • McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38–48.

    Article  CAS  Google Scholar 

  • Michaelson, G., & Ping, C. (1997). Comparison of 0.1 N sodium hydroxide with 0.1 M sodium pyrophosphate in the extraction of soil organic matter from various soil horizons. Communications in Soil Science & Plant Analysis, 28, 1141–1150.

    Article  CAS  Google Scholar 

  • Mikkelsen, P. S., Häfliger, M., Ochs, M., Jacobsen, P., Tjell, J. C., & Boller, M. (1997). Pollution of soil and groundwater from infiltration of highly contaminated stormwater—a case study. Water Science and Technology, 36, 325–330.

    Article  CAS  Google Scholar 

  • Murakami, M., Fujita, M., Furumai, H., Kasuga, I., & Kurisu, F. (2009). Sorption behavior of heavy metal species by soakaway sediment receiving urban road runoff from residential and heavily trafficked areas. Journal of Hazardous Materials, 164, 707–712.

    Article  CAS  Google Scholar 

  • Muroski, A. R., Booksh, K. S., & Myrick, M. (1996). Single-measurement excitation/emission matrix spectrofluorometer for determination of hydrocarbons in ocean water. 1. Instrumentation and background correction. Analytical Chemistry, 68, 3534–3538.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Ruiz, G. M., Dunsmuir, W. T., & Waite, T. D. (2006). Optimized parameters for fluorescence-based verification of ballast water exchange by ships. Environmental Science & Technology, 40, 2357–2362.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Stedmon, C. A., Waite, T. D., & Ruiz, G. M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 108, 40–58.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Hambly, A., Singh, S., Henderson, R. K., Baker, A., Stuetz, R., & Khan, S. J. (2011). Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model. Environmental Science & Technology, 45, 2909–2916.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5, 6557–6566.

    Article  CAS  Google Scholar 

  • Pingqing, F., Fengchang, W., & Congqiang, L. (2004). Fluorescence excitation-emission matrix characterization of a commercial humic acid. Chinese Journal of Geochemistry, 23, 309–318.

    Article  Google Scholar 

  • Pype, M. L., Patureau, D., Wery, N., Poussade, Y., & Gernjak, W. (2013). Monitoring reverse osmosis performance: conductivity versus fluorescence excitation-emission matrix (EEM). Journal of Membrane Science, 428, 205–211.

    Article  CAS  Google Scholar 

  • Sarkanen, K. V., & Ludwig, C. H. (1971). 1971, Lignins: occurrence, formation, structure and reactions. New York: Wiley-Interscience.

    Google Scholar 

  • Shutova, Y., Baker, A., Bridgeman, J., & Henderson, R. K. (2014). Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths. Water Research, 54, 159–169.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6, 572–579.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., & Markager, S. (2005). Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50, 686–697.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003a). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82, 239–254.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003b). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82, 239–254.

    Article  CAS  Google Scholar 

  • Stevenson, F. J., (1994). Humus chemistry: genesis, composition, reactions, John Wiley & Sons.

  • Wang, Z.-G., Liu, W.-Q., Zhao, N.-J., Li, H.-B., Zhang, Y.-J., Si-Ma, W.-C., & Liu, J.-G. (2007). Composition analysis of colored dissolved organic matter in Taihu Lake based on three dimension excitation-emission fluorescence matrix and PARAFAC model, and the potential application in water quality monitoring. Journal of Environmental Sciences, 19, 787–791.

    Article  CAS  Google Scholar 

  • Weng, L., Temminghoff, E. J. M., Lofts, S., Tipping, E., & Van Riemsdijk, W. H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environmental Science & Technology, 36, 4804–4810.

    Article  CAS  Google Scholar 

  • Yamashita, Y., Cory, R. M., Nishioka, J., Kuma, K., Tanoue, E., & Jaffé, R. (2010). Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean Deep Sea Research Part II. Topical Studies in Oceanography, 57, 1478–1485.

    Article  CAS  Google Scholar 

  • Yao, X., Zhang, Y., Zhu, G., Qin, B., Feng, L., Cai, L., & Gao, G. (2011). Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere, 82, 145–155.

    Article  CAS  Google Scholar 

  • Yin, Y., Impellitteri, C. A., You, S.-J., & Allen, H. E. (2002). The importance of organic matter distribution and extract soil:solution ratio on the desorption of heavy metals from soils. Science of the Total Environment, 287, 107–119.

    Article  CAS  Google Scholar 

  • Yuan, D. H., Guo, N., Guo, X. J., Zhu, N. M., Chen, L., & He, L. S. (2014). 'The spectral characteristics of dissolved organic matter from sediments in Lake Baiyangdian. Journal of Great Lakes Research: North China'.

    Google Scholar 

  • Yun, S. W., & Yu, C. (2013). The leaching characteristics of Cd, Zn, and As from submerged paddy soil and the effect of limestone treatment. Paddy and Water Environment, 13, 61–69.

    Article  Google Scholar 

  • Zhang, Y., Yin, Y., Feng, L., Zhu, G., Shi, Z., Liu, X., & Zhang, Y. (2011). Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Research, 45, 5110–5122.

    Article  CAS  Google Scholar 

  • Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., & Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupak Aryal.

Appendix 1

Appendix 1

Fig. 6
figure 6

Relationship between metal concentration and fluorescence max intensity of component 1

Fig. 7
figure 7

Relationship between metal concentration and fluorescence max intensity of component 2

Fig. 8
figure 8

Relationship between metal concentration and fluorescence max intensity of component 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, R., Furumai, H., Nakajima, F. et al. Characterisation of Prolonged Deposits of Organic Matter in Infiltration System Inlets and Their Binding with Heavy Metals: a PARAFAC Approach. Water Air Soil Pollut 226, 175 (2015). https://doi.org/10.1007/s11270-015-2426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2426-2

Keywords

Navigation