Skip to main content
Log in

Solar Light Photocatalytic Degradation of Nitrite in Aqueous Solution Over CdS Embedded on Metal–Organic Frameworks

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A CdS embedded metal-organic framework (MIL-100) composite was synthesized and used for photocatalytic degradation of nitrite ions. The obtained samples were characterized by a series of techniques such as X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM) and UV-Vis diffuse reflectance spectra (DRS). The results show that CdS nanoparticles were dispread and embedded on the MIL-100 crystals. The CdS/MIL-100 composites exhibited significant activities for photocatalytic degradation of nitrite ions through a disproportionation process in a neutral aqueous solution without any sacrificial reagents. When 20 wt% of CdS was embedded, the highest degradation yield of 92 % was achieved in 10-ppm NaNO2 aqueous solution under simulated solar light irradiation, which was fivefold of bare CdS. The enhancement in photocatalytic activities could be contributed to photosensitization and supporting of metal-organic framework scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bosko, M. L., Marchesini, F. A., Cornaglia, L. M., & Miró, E. E. (2011). Controlled Pd deposition on carbon fibers by electroless plating for the reduction of nitrite in water. Catalysis Communications, 16, 189–193.

    Article  CAS  Google Scholar 

  • Das, M. C., Xu, H., Wang, Z., Srinivas, G., Zhou, W., Yue, Y. F., Nesterov, V. N., Qian, G., & Chen, B. (2011). A Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange. Chemical Communications, 47, 11715–11717.

    Article  CAS  Google Scholar 

  • Du, J., Yuan, Y., Sun, J., Peng, F., Jiang, X., Qiu, L., Xie, A., Shen, Y., & Zhu, J. (2011). New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. Journal Of Hazardous Materials, 190, 945–951.

    Article  CAS  Google Scholar 

  • Ferey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surble, S., Dutour, J., & Margiolaki, I. (2004). A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angewandte Chemie-international Edition, 43, 6296–6301.

    Article  CAS  Google Scholar 

  • Gao, W., Chen, J., Guan, X., Jin, R., Zhang, F., & Guan, N. (2004). Catalytic reduction of nitrite ions in drinking water over Pd–Cu/TiO2 bimetallic catalyst. Catalysis Today, 93-95, 333–339.

    Article  CAS  Google Scholar 

  • Gekko, H., Hashimoto, K., & Kominami, H. (2012). Photocatalytic reduction of nitrite to dinitrogen in aqueous suspensions of metal-loaded titanium(IV) oxide in the presence of a hole scavenger: an ensemble effect of silver and palladium co-catalysts. Physical Chemistry Chemical Physics, 14, 7965–7970.

    Article  CAS  Google Scholar 

  • Guo, J., Yang, J., Liu, Y., & Ma, J. (2012). Two novel 3D metal–organic frameworks based on two tetrahedral ligands: syntheses, structures, photoluminescence and photocatalytic properties. Crystal Engineering Communications, 14, 6609–6617.

    Article  CAS  Google Scholar 

  • Hasnat, M. A., Rashed, M. A., Alam, M. S., Rahman, M. M., Islam, M. A., Hossain, S., & Ahmed, N. (2010). Electrocatalytic reduction of NO2 : platinum modified glassy carbon electrode. Catalysis Communications, 11, 1085–1089.

    Article  CAS  Google Scholar 

  • He, J., Yan, Z., Wang, J., Xie, J., Jiang, L., Shi, Y., Yuan, F., Yu, F., & Sun, Y. (2013). Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal-organic frameworks. Chemical Communications, 49, 6761–6763.

    Article  CAS  Google Scholar 

  • Höller, V., Rådevik, K., Yuranov, I., Kiwi-Minsker, L., & Renken, A. (2001). Reduction of nitrite-ions in water over Pd-supported on structured fibrous materials. Applied Catalysis B: Environmental, 32, 143–150.

    Article  Google Scholar 

  • Horiuchi, Y., Toyao, T., Saito, M., Mochizuki, K., Iwata, M., Higashimura, H., Anpo, M., & Matsuoka, M. (2012). Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. Journal of Physical Chemistry C, 116, 20848–20853.

    Article  CAS  Google Scholar 

  • Horiuchi, Y., Toyao, T., Takeuchi, M., Matsuoka, M., & Anpo, M. (2013). Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion–from semiconducting TiO2 to MOF/PCP photocatalysts. Physical Chemistry Chemical Physics, 15, 13243–13253.

    Article  CAS  Google Scholar 

  • Khan, N. A., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. Journal of Hazardous Materials, 244-245, 444–456.

    Article  CAS  Google Scholar 

  • Köhler, K., Engweiler, J., & Baiker, A. (2000). Vanadia–chromia grafted on titania: structural and catalytic properties in the selective catalytic reduction of NO by NH3. Journal of Molecular Catalysis A: Chemical, 162, 423–430.

    Article  Google Scholar 

  • Kominami, H., Gekko, H., & Hashimoto, K. (2010). Photocatalytic disproportionation of nitrite to dinitrogen and nitrate in an aqueous suspension of metal-loaded titanium(IV) oxide nanoparticles. Physical Chemistry Chemical Physics, 12, 15423–15427.

    Article  CAS  Google Scholar 

  • Korgel, B. A., & Monbouquette, H. G. (1997). Quantum confinement effects enable photocatalyzed nitrate reduction at neutral pH using CdS nanocrystals. Journal Of Physical Chemistry B, 101, 5010–5017.

    Article  CAS  Google Scholar 

  • Laurier, K. G., Vermoortele, F., Ameloot, R., De Vos, D. E., Hofkens, J., & Roeffaers, M. B. (2013). Iron(III)-based metal-organic frameworks as visible light photocatalysts. Journal of the American Chemical Society, 135, 14488–14491.

    Article  CAS  Google Scholar 

  • Li, N., Wang, P., Liu, Q., & Cao, H. (2010). Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment using sulfaminic acid. Journal of Environmental Sciences, 22, 56–61.

    Article  CAS  Google Scholar 

  • Lin, R., Shen, L., Ren, Z., Wu, W., Tan, Y., Fu, H., Zhang, J., & Wu, L. (2014). Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS. Chemical Communications, 50, 8533–8535.

    Article  CAS  Google Scholar 

  • Liu, B., Yang, J., Yang, G. C., & Ma, J. F. (2013). Four new three-dimensional polyoxometalate-based metal-organic frameworks constructed from [Mo6O18(O3AsPh)2]4- polyoxoanions and copper(I)-organic fragments: syntheses, structures, electrochemistry, and photocatalysis properties. Inorganic Chemistry, 52, 84–94.

    Article  CAS  Google Scholar 

  • Long, P., Wu, H., Zhao, Q., Wang, Y., Dong, J., & Li, J. (2011). Solvent effect on the synthesis of MIL-96(Cr) and MIL-100(Cr). Microporous and Mesoporous Materials, 142, 489–493.

    Article  CAS  Google Scholar 

  • Mahata, P., Madras, G., & Natarajan, S. (2006). Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds. Journal of Physical Chemistry B, 110, 13759–13768.

    Article  CAS  Google Scholar 

  • Modrow, A., Zargarani, D., Herges, R., & Stock, N. (2012). Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification. Dalton Transactions, 41, 8690–8696.

    Article  CAS  Google Scholar 

  • Nasalevich, M. A., van der Veen, M., Kapteijn, F., & Gascon, J. (2014). Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 16, 4919–4926.

    Article  CAS  Google Scholar 

  • Navı́o, J. A., Colón, G., Trillas, M., Peral, J., Domènech, X., Testa, J. J., Padrón, J., Rodrı́guez, D., & Litter, M. I. (1998). Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Applied Catalysis B: Environmental, 16, 187–196.

    Article  Google Scholar 

  • Pintar, A., Berčič, G., & Levec, J. (1998). Catalytic liquid phase nitrite reduction: kinetics and catalyst deactivation. AICHE Journal, 44, 2280–2292.

    Article  CAS  Google Scholar 

  • Ranjit, K. T., & Viswanathan, B. (1997). Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 108, 73–78.

    Article  CAS  Google Scholar 

  • Ranjit, K. T., Krishnamoorthy, R., Varadarajan, T. K., & Viswanathan, B. (1995). Photocatalytic reduction of nitrite on CdS. Journal of Photochemistry and Photobiology A: Chemistry, 86, 185–189.

    Article  CAS  Google Scholar 

  • Rengaraj, S., & Li, X. Z. (2007). Enhanced photocatalytic reduction reaction over Bi3+-TiO2 nanoparticles in presence of formic acid as a hole scavenger. Chemosphere, 66, 930–938.

    Article  CAS  Google Scholar 

  • Saedi, Z., Tangestaninejad, S., Moghadam, M., Mirkhani, V., & Mohammadpoor-Baltork, I. (2012). MIL-101 metal–organic framework: a highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2. Catalysis Communications, 17, 18–22.

    Article  CAS  Google Scholar 

  • Sha, S., Yang, H., Li, J., Zhuang, C., Gao, S., & Liu, S. (2014). Co(II) coordinated metal-organic framework: an efficient catalyst for heterogeneous aerobic olefins epoxidation. Catalysis Communications, 43, 146–150.

    Article  CAS  Google Scholar 

  • Shand, M., & Anderson, J. A. (2013). Aqueous phase photocatalytic nitrate destruction using titania based materials: routes to enhanced performance and prospects for visible light activation. Catalysis Science & Technology, 3, 879–899.

    Article  CAS  Google Scholar 

  • Shen, L., Liang, S., Wu, W., Liang, R., & Wu, L. (2013). CdS-decorated UiO–66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. Journal of Materials Chemistry A, 1, 11473–11482.

    Article  CAS  Google Scholar 

  • Shuai, D., Choe, J. K., Shapley, J. R., & Werth, C. J. (2012). Enhanced activity and selectivity of carbon nanofiber supported Pd catalysts for nitrite reduction. Environmental Science & Technology, 46, 2847–2855.

    Article  CAS  Google Scholar 

  • Si, X., Sun, L., Xu, F., Jiao, C., Li, F., Liu, S., Zhang, J., Song, L., Jiang, C., Wang, S., Liu, Y., & Sawada, Y. (2011). Improved hydrogen desorption properties of ammonia borane by Ni-modified metal-organic frameworks. International Journal of Hydrogen Energy, 36, 6698–6704.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, C., & Lin, W. (2012). Metal–organic frameworks for light harvesting and photocatalysis. ACS Catalysis, 2, 2630–2640.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality, 4th ed. WHO: Geneva.

    Google Scholar 

  • Yang, H., He, X., Wang, F., Kang, Y., & Zhang, J. (2012). Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 22, 21849–21851.

    Article  CAS  Google Scholar 

  • Yang, X., Yan, Z., Jiang, L., Wang, X., Zheng, K., Wang, Y., Li, Q., & Wang, J. (2013). Synthesis and photocatalysis of AL doped CdS templated by non-surfactant hypocrellins. Procedia Environmental Sciences, 18, 572–578.

    Article  CAS  Google Scholar 

  • Zhang, T., & Lin, W. (2014). Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 43, 5982–5993.

    Article  CAS  Google Scholar 

  • Zhang, F., Jin, R., Chen, J., Shao, C., Gao, W., Li, L., & Guan, N. (2005). High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. Journal of Catalysis, 232, 424–431.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Project NSFC-YN U1033603, 21367024, 21464016) and the Program for Innovative Research Teams (in Science and Technology) in the University of Yunnan Province (IRTSTYN) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Yan.

Additional information

Jiao He and Haiyan Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Yang, H., Chen, Y. et al. Solar Light Photocatalytic Degradation of Nitrite in Aqueous Solution Over CdS Embedded on Metal–Organic Frameworks. Water Air Soil Pollut 226, 197 (2015). https://doi.org/10.1007/s11270-015-2420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2420-8

Keywords

Navigation