Skip to main content
Log in

Remediation of a Biodiesel Blend-Contaminated Soil with Activated Persulfate by Different Sources of Iron

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present work studies the remediation of a B20 (20 % biodiesel, 80 % diesel) biodiesel blend-contaminated soil (1,000 mg kg−1) with persulfate activated by iron. Three different sources of iron (Fe(II)), granular zerovalent iron (gZVI), and a slurry of nanoparticles of zerovalent iron (nZVI), without pH adjustment were tested. Besides, the effect of the addition of chelating agents, such as trisodium citrate (SC), or citric acid (CiA), has been also studied. SC promotes pH under near-neutral conditions and reaction takes place at low rate at these experimental conditions. On the other hand, the use of CiA leads to an acidic pH and chelating agent is oxidized at higher rate than total petroleum hydrocarbons (TPH). Therefore, CiA addition does not seem to produce any improvement on the removal efficiency of TPH. Regarding the three different sources of iron used as activators, Fe(II), gZVI and nZVI, in absence of chelating agent, under acidic pH and by adding the same amount of iron, the highest TPH conversion was obtained with ZVI (about 60 %), while a conversion of about 40 % was obtained with the addition of Fe(II). The maximum TPH conversion value was achieved in shorter time using nZVI. Concerning the removal efficiency of each fraction of biodiesel abated, fatty acid methyl esters (FAME) were by far the easiest to oxidize, achieving 100 % of conversion, either by using Fe(II) or nZVI activated persulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Shamsi, M. A., & Thomson, N. R. (2013). Treatment of a trichloroethylene source zone using persulfate activated by an emplaced nano-Pd-Fe-0 zone. Water Air and Soil Pollution, 224(11), doi: 10.1007/s11270-013-1780-1.

  • Anipsitakis, G. P., & Dionysiou, D. D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 38(13), 3705–3712. doi:10.1021/es035121o.

    Article  CAS  Google Scholar 

  • Anotai, J., Bunmahotama, W., & Lu, M. C. (2011). Oxidation of aniline with sulfate radicals in the presence of citric acid. Environmental Engineering Science, 28(3), 207–215. doi:10.1089/ees.2010.0169.

    Article  CAS  Google Scholar 

  • Baciocchi, R. (2013). Principles, developments and design criteria of in situ chemical oxidation. Water Air and Soil Pollution, 224(12), doi: 10.1007/s11270-013-1717-8.

  • Bertolla, L., Porsani, J. L., Soldovieri, F., & Catapano, I. (2014). GPR-4D monitoring a controlled LNAPL spill in a masonry tank at USP, Brazil. Journal of Applied Geophysics, 103, 237–244. doi:10.1016/j.jappgeo.2014.02.006.

    Article  Google Scholar 

  • Bumbac, C., & Diacu, E. (2012). Coupled chemical and biological treatment of oil contaminated soils. Revista de Chimie, 63(11), 1167–1171.

    CAS  Google Scholar 

  • Chang, Y. Y., Roh, H., & Yang, J. K. (2013). Improving the clean-up efficiency of field soil contaminated with diesel oil by the application of stabilizers. Environmental Technology, 34(11), 1481–1487. doi:10.1080/09593330.2012.758658.

    Article  CAS  Google Scholar 

  • Chen, Y., Li, C., Zhou, Z. X., Wen, J. P., You, X. Y., Mao, Y. Z., et al. (2014). Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis. Applied Biochemistry and Biotechnology, 172(7), 3433–3447. doi:10.1007/s12010-014-0777-6.

    Article  CAS  Google Scholar 

  • Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., & Zhou, S. (2014). Zero-valent iron/persulfate(Fe-0/PS) oxidation acetaminophen in water. International Journal of Environmental Science and Technology, 11(4), 881–890. doi:10.1007/s13762-013-0284-2.

    Article  CAS  Google Scholar 

  • Do, S. H., Kwon, Y. J., & Kong, S. H. (2010). Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel-contaminated soil and sand. Journal of Hazardous Materials, 182(1–3), 933–936. doi:10.1016/j.jhazmat.2010.06.068.

    Article  CAS  Google Scholar 

  • Furman, O. S., Teel, A. L., & Watts, R. J. (2010). Mechanism of base activation of persulfate. Environmental Science & Technology, 44(16), 6423–6428. doi:10.1021/es1013714.

    Article  CAS  Google Scholar 

  • Gallego, J. L. R., Loredo, J., Llamas, J. F., Vazquez, F., & Sanchez, J. (2001). Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation, 12(5), 325–335. doi:10.1023/a:1014397732435.

    Article  CAS  Google Scholar 

  • Gu, X. G., Lu, S. G., Li, L., Qiu, Z. F., Sui, Q., Lin, K. F., et al. (2011). Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate. Industrial & Engineering Chemistry Research, 50(19), 11029–11036. doi:10.1021/le201059x.

    Article  CAS  Google Scholar 

  • Ji, Y., Ferronato, C., Salvador, A., Yang, X., & Chovelon, J.-M. (2014). Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Science of the Total Environment, 472, 800–808. doi:10.1016/j.scitotenv.2013.11.008.

    Article  CAS  Google Scholar 

  • Killian, P. F., Bruell, C. J., Liang, C. J., & Marley, M. C. (2007). Iron (II) activated persulfate oxidation of MGP contaminated soil. Soil and Sediment Contamination, 16(6), 523–537. doi:10.1080/15320380701623206.

    Article  CAS  Google Scholar 

  • Liang, C. J., & Guo, Y. Y. (2010). Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environmental Science & Technology, 44(21), 8203–8208. doi:10.1021/es903411a.

    Article  CAS  Google Scholar 

  • Liang, C. J., & Guo, Y. Y. (2012). Remediation of diesel-contaminated soils using persulfate under alkaline condition. Water, Air, and Soil Pollution, 223(7), 4605–4614. doi:10.1007/s11270-012-1221-6.

    Article  CAS  Google Scholar 

  • Liang, C. J., & Lai, M. C. (2008). Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science, 25(7), 1071–1077. doi:10.1089/ees.2007.0174.

    Article  CAS  Google Scholar 

  • Liang, C. J., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2004a). Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 55(9), 1213–1223. doi:10.1016/j.chemosphere.2004.01.029.

    Article  CAS  Google Scholar 

  • Liang, C. J., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2004b). Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere, 55(9), 1225–1233. doi:10.1016/j.chemosphere.2004.01.030.

    Article  CAS  Google Scholar 

  • Liang, C. J., Huang, C. F., Mohanty, N., Lu, C. J., & Kurakalva, R. M. (2007). Hydroxypropyl-beta-cyclodextrin-mediated iron-activated persulfate oxidation of trichloroethylene and tetrachloroethylene. Industrial & Engineering Chemistry Research, 46(20), 6466–6479. doi:10.1021/ie0705148.

    Article  CAS  Google Scholar 

  • Liang, C. J., Liang, C. P., & Chen, C. C. (2009). pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. Journal of Contaminant Hydrology, 106(3–4), 173–182. doi:10.1016/j.jconhyd.2009.02.008.

    Article  CAS  Google Scholar 

  • Lo, I. M. C., Tanboonchuy, V., Yan, D. Y. S., Grisdanurak, N., & Liao, C. H. (2012). A hybrid approach for PAHs and metals removal from field-contaminated sediment using activated persulfate oxidation coupled with chemical-enhanced washing. Water, Air, and Soil Pollution, 223(8), 4801–4811. doi:10.1007/s11270-012-1236-z.

    Article  CAS  Google Scholar 

  • Luo, Q. S. (2014). Oxidative treatment of aqueous monochlorobenzene with thermally-activated persulfate. Frontiers of Environmental Science & Engineering, 8(2), 188–194. doi:10.1007/s11783-013-0544-x.

    Article  CAS  Google Scholar 

  • Marchal, R., Penet, S., Solano-Serena, F., & Vandecasteele, J. P. (2003). Gasoline and diesel oil biodegradation. Oil & Gas Science and Technology-Revue D Ifp Energies Nouvelles, 58(4), 441–448. doi:10.2516/ogst:2003027.

    Article  CAS  Google Scholar 

  • Martí, F. B. (2002). Química analítica cualitativa. Madrid: Paraninfo.

    Google Scholar 

  • Mitre, T. K., Leao, M. M. D., & Alvarenga, M. C. N. (2013). Treatment of water contaminated by diesel/biodiesel using fenton process. Engenharia Sanitaria E Ambientale, 17(2), 129–136.

    Article  Google Scholar 

  • Oh, S. Y., & Shin, D. S. (2014). Treatment of diesel-contaminated soil by fenton and persulfate oxidation with zero-valent iron. Soil and Sediment Contamination, 23(2), 180–193. doi:10.1080/15320383.2014.808170.

    Article  CAS  Google Scholar 

  • Oh, S. Y., Kim, H. W., Park, J. M., Park, H. S., & Yoon, C. (2009). Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. Journal of Hazardous Materials, 168(1), 346–351. doi:10.1016/j.jhazmat.2009.02.065.

    Article  CAS  Google Scholar 

  • Pardo, F., Rosas, J., Santos, A., & Romero, A. (2014a). Remediation of a biodiesel blend-contaminated soil by using a modified fenton process. Environmental Science and Pollution Research, 21(21), 12198–12207. doi:10.1007/s11356-014-2997-2.

    Article  CAS  Google Scholar 

  • Pardo, F., Rosas, J. M., Santos, A., & Romero, A. (2014b). Remediation of soil contaminated by NAPLs using modified fenton reagent: application to gasoline type compounds. Journal of Chemical Technology and Biotechnology. doi:10.1002/jctb.4373.

    Google Scholar 

  • Pereira, C. A., Marques, M. R. D., & Perez, D. V. (2009). Evaluation of potencial fenton-like process to the remediation of contaminated soils by diesel. Quimica Nova, 32(8), 2200–2202.

    Article  CAS  Google Scholar 

  • Rodriguez, S., Vasquez, L., Costa, D., Romero, A., & Santos, A. (2014). Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere, 101, 86–92. doi:10.1016/j.chemosphere.2013.12.037.

    Article  CAS  Google Scholar 

  • Romero, A., Santos, A., Vicente, F., & Gonzalez, C. (2010). Diuron abatement using activated persulphate: effect of pH, Fe(II) and oxidant dosage. Chemical Engineering Journal, 162(1), 257–265. doi:10.1016/j.cej.2010.05.044.

    Article  CAS  Google Scholar 

  • Siegrist, R. L., Crimi, M., & Simpkin, T. J. (2011). In situ chemical oxidation for groundwater remediation. New York: Springer.

    Book  Google Scholar 

  • Soliman, R. M., El-Gendy, N. S., Deriase, S. F., Farahat, L. A., & Mohamed, A. S. (2014). The evaluation of different bioremediation processes for Egyptian oily sludge polluted soil on a microcosm level. Energy Sources Part A Recovery Utilization and Environmental Effects, 36(3), 231–241. doi:10.1080/15567036.2012.711799.

    Article  CAS  Google Scholar 

  • Sutton, N. B., Grotenhuis, T., & Rijnaarts, H. H. M. (2014). Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil. Chemosphere, 97, 64–70. doi:10.1016/j.chemosphere.2013.11.005.

    Article  CAS  Google Scholar 

  • Tan, C. Q., Gao, N. Y., Deng, Y., An, N., & Deng, J. (2012). Heat-activated persulfate oxidation of diuron in water. Chemical Engineering Journal, 203, 294–300. doi:10.1016/j.cej.2012.07.005.

    Article  CAS  Google Scholar 

  • Tang, J. C., Lu, X. Q., Sun, Q., & Zhu, W. Y. (2012). Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agriculture, Ecosystems & Environment, 149, 109–117. doi:10.1016/j.agee.2011.12.020.

    Article  CAS  Google Scholar 

  • Triszcz, J. M., Port, A., & Einschlag, F. S. G. (2009). Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal. Chemical Engineering Journal, 150(2–3), 431–439. doi:10.1016/j.cej.2009.01.029.

    Article  CAS  Google Scholar 

  • Tsai, T. T., & Kao, C. M. (2009). Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag. Journal of Hazardous Materials, 170(1), 466–472. doi:10.1016/j.jhazmat.2009.04.073.

    Article  CAS  Google Scholar 

  • Tsitonaki, A., Petri, B., Crimi, M., MosbÆK, H., Siegrist, R. L., & Bjerg, P. L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Critical Reviews in Environmental Science and Technology, 40(1), 55–91. doi:10.1080/10643380802039303.

    Article  CAS  Google Scholar 

  • Venny, Gan, S. Y., & Ng, H. K. (2012). Inorganic chelated modified-fenton treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Chemical Engineering Journal, 180, 1–8. doi:10.1016/j.cej.2011.10.082.

    Article  CAS  Google Scholar 

  • Vicente, F., Santos, A., Romero, A., & Rodriguez, S. (2011). Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method. Chemical Engineering Journal, 170(1), 127–135. doi:10.1016/j.cej.2011.03.042.

    Article  CAS  Google Scholar 

  • Vicente, F., Santos, A., Saguillo, E. G., Martinez-Villacorta, A. M., Rosas, J. M., & Romero, A. (2012). Diuron abatement in contaminated soil using fenton-like process. Chemical Engineering Journal, 183, 357–364. doi:10.1016/j.cej.2012.01.010.

    Article  CAS  Google Scholar 

  • Villa, R. D., Trovo, A. G., & Nogueira, R. F. P. (2010). Diesel degradation in soil by fenton process. Journal of the Brazilian Chemical Society, 21(6), 1088–1095.

    Article  CAS  Google Scholar 

  • Watts, R. J., & Dilly, S. E. (1996). Evaluation of iron catalysts for the fenton-like remediation of diesel-contaminated soils. Journal of Hazardous Materials, 51(1–3), 209–224. doi:10.1016/s0304-3894(96)01827-4.

    Article  CAS  Google Scholar 

  • Xu, J. L., Pancras, T., & Grotenhuis, T. (2011). Chemical oxidation of cable insulating oil contaminated soil. Chemosphere, 84(2), 272–277. doi:10.1016/j.chemosphere.2011.03.044.

    Article  CAS  Google Scholar 

  • Yan, D. Y. S., & Lo, I. M. C. (2013). Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate. Environmental Pollution, 178, 15–22. doi:10.1016/j.envpol.2013.02.030.

    Article  CAS  Google Scholar 

  • Yen, C. H., Chen, K. F., Kao, C. M., Liang, S. H., & Chen, T. Y. (2011). Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: feasibility and comparison with common oxidants. Journal of Hazardous Materials, 186(2–3), 2097–2102. doi:10.1016/j.jhazmat.2010.12.129.

    Article  CAS  Google Scholar 

  • Zhao, D., Liao, X., Yan, X., Huling, S. G., Chai, T., & Tao, H. (2013). Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. Journal of Hazardous Materials, 254–255, 228–235. doi:10.1016/j.jhazmat.2013.03.056.

    Article  Google Scholar 

  • Zhou, L., Zheng, W., Ji, Y. F., Zhang, J. F., Zeng, C., Zhang, Y., et al. (2013). Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system. Journal of Hazardous Materials, 263, 422–430. doi:10.1016/j.jhazmat.2013.09.056.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Comunidad Autonoma de Madrid provided throughout project CARESOIL (S2009AMB-1648) and from Spanish Ministry of Science and Innovation, project CTM2010-16693.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardo, F., Rosas, J.M., Santos, A. et al. Remediation of a Biodiesel Blend-Contaminated Soil with Activated Persulfate by Different Sources of Iron. Water Air Soil Pollut 226, 17 (2015). https://doi.org/10.1007/s11270-014-2267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2267-4

Keywords

Navigation