Skip to main content
Log in

Enhanced Biodegradation of Alkane Hydrocarbons and Crude Oil by Mixed Strains and Bacterial Community Analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10−3 to 28.6 × 10−3 N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abboud, M. M., Kheifat, K. M., Batarseh, M., Tarawneh, K. A., Al-Mustafa, A., & Al-Madadhah, M. (2007). Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme and Microbial Technology, 41(4), 432–439.

    Article  CAS  Google Scholar 

  2. Adelowo, O. O., Alagbe, S. O., & Ayandele, A. A. (2006). Time-dependent stability of used engine oil degradation by cultures of Pseudomonas fragi and Achromobacter aerogenes. African Journal of Biotechnology, 5(24), 2476–2479.

    CAS  Google Scholar 

  3. Arutchelvi, J., Joseph, C., & Doble, M. (2011). Process optimization for the production of rhamnolipid and formation of biofilm by Pseudomonas aeruginosa CPCL on polypropylene. Biochemical Engineering Journal, 56(1–2), 37–45.

    Article  CAS  Google Scholar 

  4. Binazadeh, M., Karimi, I. A., & Li, Z. (2009). Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp Moj-3449. Enzyme and Microbial Technology, 45(3), 195–202.

    Article  CAS  Google Scholar 

  5. Bodtker, G., Hvidsten, I. V., Barth, T., & Torsvik, T. (2009). Hydrocarbon degradation by Dietzia sp A14101 isolated from an oil reservoir model column. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 96(4), 459–469.

    Article  CAS  Google Scholar 

  6. Cerqueira, V. S., Hollenbach, E. B., Maboni, F., Vainstein, M. H., Camargo, F. A. O., MdCR, P., & Bento, F. M. (2011). Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresource Technology, 102(23), 11003–11010.

    Article  CAS  Google Scholar 

  7. Gojgic-Cvijovic, G. D., Milic, J. S., Solevic, T. M., Beskoski, V. P., Ilic, M. V., Djokic, L. S., Narancic, T. M., & Vrvic, M. M. (2012). Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. Biodegradation, 23(1), 1–14.

    Article  CAS  Google Scholar 

  8. Jadhav, M., Kalme, S., Tamboli, D., & Govindwar, S. (2011). Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. Journal of Basic Microbiology, 51(4), 385–396.

    Article  CAS  Google Scholar 

  9. Lal, B., & Khanna, S. (1996). Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. The Journal of Applied Bacteriology, 81(4), 355–362.

    CAS  Google Scholar 

  10. Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological Reviews, 54(3), 305–315.

    CAS  Google Scholar 

  11. Lotfabad, T. B., Abassi, H., Ahmadkhaniha, R., Roostaazad, R., Masoomi, F., Zahiri, H. S., Ahmadian, G., Vali, H., & Noghabi, K. A. (2010). Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids and Surfaces B-Biointerfaces, 81(2), 397–405.

    Article  CAS  Google Scholar 

  12. Luckarift, H. R., Sizemore, S. R., Farrington, K. E., Fulmer, P. A., Biffinger, J. C., Nadeau, L. J., & Johnson, G. R. (2011). Biodegradation of medium chain hydrocarbons by Acinetobacter venetianus 2AW immobilized to hair-based adsorbent mats. Biotechnology Progress, 27(6), 1580–1587.

    Article  CAS  Google Scholar 

  13. Mehdi, H., & Giti, E. (2008). Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation. International Biodeterioration & Biodegradation, 62(2), 170–178.

    Article  CAS  Google Scholar 

  14. Mishra, S., Sarma, P. M., & Lal, B. (2004). Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm. Fems Microbiology Letters, 235(2), 323–331.

    Article  CAS  Google Scholar 

  15. Mohanty, S., & Mukherji, S. (2012). Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons. Applied Microbiology and Biotechnology, 94(1), 193–204.

    Article  CAS  Google Scholar 

  16. Nayak, A. S., Vijaykumar, M. H., & Karegoudar, T. B. (2009). Characterization of biosurfactant produced by Pseudoxanthomonas sp PNK-04 and its application in bioremediation. International Biodeterioration & Biodegradation, 63(1), 73–79.

    Article  CAS  Google Scholar 

  17. Obayori, U. S., Adebusoye, S. A., Adewale, A. O., Oyetibo, G. O., Oluyemi, O. O., Amokun, R. A., & Ilori, M. O. (2009). Differential degradation of crude oil (Bonny Light) by four Pseudomonas strains. Journal of Environmental Sciences China, 21(2), 243–248.

    Article  CAS  Google Scholar 

  18. Okieimen, C. O., & Okieimen, F. E. (2002). Effect of natural rubber processing sludge on the degradation of crude oil hydrocarbons in soil. Bioresource Technology, 82(1), 95–97.

    Article  CAS  Google Scholar 

  19. Ollis, D. (1992). Slick solution for oil spills. Nature, 358, 453–454.

    Article  Google Scholar 

  20. Salam, L. B., Obayori, O. S., Akashoro, O. S., & Okogie, G. O. (2011). Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil. International Journal of Agriculture and Biology, 13(2), 245–250.

    CAS  Google Scholar 

  21. Sei, K., Sugimoto, Y., Mori, K., Maki, H., & Kohno, T. (2003). Monitoring of alkane-degrading bacteria in a sea-water microcosm during crude oil degradation by polymerase chain reaction based on alkane-catabolic genes. Environmental Microbiology, 5(6), 517–522.

    Article  CAS  Google Scholar 

  22. Siegmund, I., & Wagner, F. (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnology Techniques, 5(4), 265–268.

    Article  CAS  Google Scholar 

  23. Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource Technology, 102(3), 3366–3372.

    Article  CAS  Google Scholar 

  24. Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresource Technology, 102(2), 772–778.

    Article  CAS  Google Scholar 

  25. Vyas, T. K., & Dave, B. P. (2007). Effect of crude oil concentrations, temperature and pH on growth and degradation of crude oil by marine bacteria. Indian Journal of Marine Sciences, 36(1), 76–85.

    Google Scholar 

  26. Wang, X. B., Chi, C. Q., Nie, Y., Tang, Y. Q., Tan, Y., Wu, G., & Wu, X. L. (2011). Degradation of petroleum hydrocarbons (C6-C40) and crude oil by a novel Dietzia strain. Bioresource Technology, 102(17), 7755–7761.

    Article  CAS  Google Scholar 

  27. Wang, Z., & Fingas, M. F. (2003). Development of oil hydrocarbon fingerprinting and identification techniques. Marine Pollution Bulletin, 47(9), 423–452.

    Article  CAS  Google Scholar 

  28. Yerima, M. B., Balogun, A. A., Farouq, A. A., & Muhammad, S. (2009). Laboratory based degradation of light crude oil by aquatic phycomycetes. African Journal of Biotechnology, 8(16), 3851–3853.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the National Key Basic Research Program of China (No. 2014CB745100), the Natural Science Foundation of Tianjin, the Seed Foundation of Tianjin University, the Program of Introducing Talents of Discipline to Universities (No. B06006), the Science and Technology Project from China National Offshore Oil Corporation (CNOOC-KJ 125 ZDXM 25JAB NFCY 2013-01) and the Science and Technology Project of Tianjin Binhai New Area (2012-XJR23017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Li, C., Zhou, Z. et al. Enhanced Biodegradation of Alkane Hydrocarbons and Crude Oil by Mixed Strains and Bacterial Community Analysis. Appl Biochem Biotechnol 172, 3433–3447 (2014). https://doi.org/10.1007/s12010-014-0777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0777-6

Keywords

Navigation