Skip to main content
Log in

Effect of Citric Acid, Rhizosphere Bacteria, and Plant Age on Metal Uptake in Reeds Cultured in Acid Mine Drainage

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Acid mine drainage (AMD) poses serious environmental problems. This study assessed the effect of plant age, rhizosphere bacteria, and citric acid (CA) on the metal plaque formation and metal uptake in Phragmites australis cultured in a synthetic AMD solution. Iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque, which slightly decreased Fe and Mn uptake. CA reduced the growth of Fe(II)OB and formation of Fe plaque, thereby increasing the Fe and Mn accumulations in reeds. Adult reeds had developed more Fe plaque on the root surface than seedlings. However, the adult reeds still accumulated higher concentrations of metals due to their higher tolerance to toxic environments and bigger biomass. With 9.02 g/L CA, adult reeds accumulated 0.51 ± 0.00 mg Mn, 109.38 ± 1.37 mg Fe, and 1.77 ± 0.04 mg Al. More investigation may be needed to further study the effect of CA when applied to AMD-contaminated field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abhilash, P. C., Srivastava, S., Srivastava, P., Singh, B., Jafri, A., & Singh, N. (2011). Influence of rhizospheric microbial inoculation and tolerant plant species on the rhizoremediation of lindane. Environmental and Experimental Botany, 74, 127–130.

    Article  CAS  Google Scholar 

  • Ali, B., Huang, C. R., Qi, Z. Y., Ali, S., Daud, K., Geng, X. X., Liu, H. B., & Zhou, W. J. (2013). 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical and ultrastructural changes in seedlings of oilseed rape. Environmental Science and Pollution Research, 20, 7256–7267.

    Article  CAS  Google Scholar 

  • Ali, B., Song, W. J., Hu, W. Z., Luo, X. N., Gill, R. A., Wang, J., & Zhou, W. J. (2014). Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oilseed rape. Exotoxicology and Environmental Safety, 102(25–33), 2014.

    Google Scholar 

  • Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14(12–13), 1139–1145.

    Article  Google Scholar 

  • Asao, T. (2012). Hydroponics—a standard methodology for plant biological researches. Croatia: Intech.

    Book  Google Scholar 

  • Baldantoni, D., Ligrone, R., & Alfani, A. (2009). Macro- and trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. Journal of Geochemical Exploration, 101(2), 166–174.

    Article  CAS  Google Scholar 

  • Batty, L. C., Baker, A. J. M., Wheeler, B. D., & Curtis, C. D. (2000). The Effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel. Annals of Botany, 86(3), 647–653.

    Article  CAS  Google Scholar 

  • Batty, L. C., Baker, A. J. M., & Wheeler, B. D. (2002). Aluminum and phosphate uptake by Phragmites australis: the role of Fe, Mn and Al root plaques. Annals of Botany, 89(4), 443–449.

    Article  CAS  Google Scholar 

  • Bell, P. F., McLaughlin, M. J., Gozens, G., Stevens, D. P., Owens, G., & South, H. (2003). Plant uptake of 14C-EDTA, 14C-citrate, and 14C-histidine from chelator buffered and conventional hydroponic solutions. Plant and Soil, 253(2), 311–319.

    Article  CAS  Google Scholar 

  • Brantner, J., & Senko, J. M. (2014). Response of soil-associated microbial communities to the intrusion of acid mine drainage. Environmental Science and Technology, 48(15), 8556–8563.

    Article  CAS  Google Scholar 

  • Chen, R. F., Shen, R. F., Gu, P., Dong, X. Y., Du, C. W., & Ma, J. F. (2006). Response of rice (Oryza sativa) with root surface iron plaque under aluminum stress. Annals of Botany, 98(2), 389–395.

    Article  CAS  Google Scholar 

  • Cutright, T. J., Senko, J., Sivaram, S., & York, M. (2012). Evaluation of phytoextraction potential at an acid mine drainage (AMD) impacted site. Soil and Sediment Contamination: An International Journal, 21(8), 970–984.

    Article  CAS  Google Scholar 

  • De Sa, T. C., Brown, J. F., & Burgos, W. D. (2010). Laboratory and field-scale evaluation of low-pH Fe(II) oxidation at Hughes Borehole, Portage, Pennsylvania. Mine Water and the Environment, 29(4), 239–249.

    Article  Google Scholar 

  • Duquène, L., Vandenhove, H., Tack, F., Meers, E., Baeten, J., & Wannijn, J. (2009). Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Science of the Total Environment, 407(5), 1496–1505.

    Article  Google Scholar 

  • Ernst, W. H. O. (2006). Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80, 251–274.

    Google Scholar 

  • Greipsson, S., & Crowder, A. A. (1992). Amelioration of copper and nickel toxicity by iron plaque on roots of rice (Oryza sativa). Canadian Journal of Botany, 70(4), 824–830.

    Article  CAS  Google Scholar 

  • Guo, L., & Cutright, T. J. (2014). Remediation of acid mine drainage (AMD) contaminated soil by Phragmites australis and rhizosphere bacteria. Environmental Science and Pollution Research, 21(12), 7350–7360.

    Article  CAS  Google Scholar 

  • Hallberg, K. B. (2010). New perspectives in acid mine drainage microbiology. Hydrometallurgy, 104, 448–453.

    Article  CAS  Google Scholar 

  • Jean-Soro, L., Bordas, F., & Bollinger, J. C. (2012). Column leaching of chromium and nickel form a contaminated soil using EDTA and citric acid. Environmental Pollution, 164, 175–181.

    Article  CAS  Google Scholar 

  • Johnson, D. B. (1995a). Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. International Biodeterioration and Biodegradation, 35(1–3), 41–58.

    Article  CAS  Google Scholar 

  • Johnson, D. B. (1995b). Selective solid media for isolating and enumerating acidophilic bacteria. Journal of Microbiological Methods, 23(2), 205–218.

    Article  Google Scholar 

  • Jones, D. L. (1998). Organic acids in the rhizosphere—a critical review. Plant and Soil, 205(1), 25–44.

    Article  CAS  Google Scholar 

  • Kosová, K., Vitamavas, P., Prasil, I. T., & Renaut, J. (2011). Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74(8), 1301–1322.

    Article  Google Scholar 

  • Mihalík, J., Tlustoš, P., & Szaková, J. (2010). Comparison of willow and sunflower for uranium phytoextraction induced by citric acid. Journal of Radioanalytical and Nuclear Chemistry, 285(2), 279–285.

    Article  Google Scholar 

  • Morel, F. M. M., & Hering, J. G. (1993). Principles and applications of aquatic chemistry. New York, NY: John Wiley and Sons, INC.

    Google Scholar 

  • Najeeb, U., Xu, L., Ali, S., Jilani, S., Gong, H. J., Shen, W. Q., & Zhou, W. J. (2009). Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. Journal of Hazardous Materials, 170, 1156–1163.

    Article  CAS  Google Scholar 

  • Najeeb, U., Jilani, G., Ali, S., Sarwar, M., Xu, L., & Zhou, W. (2011). Insights into cadmium indusced physiological and ultra-structural disorders in Juncus effuses L. and its remediation through exogenous citric acid. Journal of Hazardous Materials, 186(1), 565–574.

    Article  CAS  Google Scholar 

  • Nealson, K. H., Tebo, B. M., & Rosson, R. A. (1988). Occurrence and mechanisms of microbial oxidation of manganese. Advances in Applied Microbiology, 33, 279–318.

    CAS  Google Scholar 

  • Peralta-Videa, J. R., de la Rosa, G., Gonzalez, J. H., & Gardea-Torresdey, J. L. (2004). Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Advances in Environmental Research, 8, 679–685.

    Article  CAS  Google Scholar 

  • Perez-Esteban, J., Escolastico, C., Moliner, A., & Masaguer, A. (2013). Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acid. Chemosphere, 90(2), 276–283.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Chiarucci, A., Brooks, R. R., Petit, D., Kirkman, J. H., Gregg, P. E. H., & Dominicis, V. D. (1997). The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. Journal of Geochemical Exploration, 59(2), 75–86.

    Article  CAS  Google Scholar 

  • Rofkar, J. R., & Dwyer, D. F. (2011). Effects of light regime, temperature, and plant age on uptake of arsenic by Spartina pectinata and Carex stricta. International Journal of Phytoremediation, 13(6), 528–537.

    Article  CAS  Google Scholar 

  • Senko, J. M., Wanjugi, P., Lucas, M., Bruns, M. A., & Burgos, W. D. (2008). Characterization of Fe(II) oxidizing bacterial communities at two acidic Appalachian coal mine drainage impacted sites. The International Society for Microbial Ecology Journal, 2(11), 1134–1145.

    CAS  Google Scholar 

  • Silva, I. R., Smyth, T. J., Israel, D. W., Raper, C. D., & Rufty, T. W. (2001). Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by roots. Plant and Cell Physiology, 42(5), 546–554.

    Article  CAS  Google Scholar 

  • Sobolev, D., & Roden, E. E. (2001). Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen at circumneutral pH. Applied and Environmental Microbiology, 67(3), 1328–1334.

    Article  CAS  Google Scholar 

  • Taylor, G. J., & Crowder, A. A. (1983). Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plant. American Journal of Botany, 70(8), 1254–1257.

    Article  CAS  Google Scholar 

  • Taylor, G. J., Crowder, A. A., & Rodden, R. (1984). Formation and morphology of an iron plaque on the toots of Typha latifolia L. grown in solution culture. American Journal of Botany, 71(5), 666–675.

    Article  CAS  Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30(5), 685–700.

    Article  CAS  Google Scholar 

  • White, J. C., Mattina, M. I., Lee, W. Y., Eitzer, B. D., & Iannucci-Berger, W. (2003). Role of organic acids in enhancing the desorption and uptake of weathered p, p-DDE by Cucurbita pepo. Environmental Pollution, 124(1), 71–80.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Baker, A. J. M., Wong, M. H., & Willis, A. J. (1997). Copper and nickel uptake, accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface. New Phytologist, 136(3), 481–488.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Cheung, K. C., & Wong, M. H. (2003). Cadmium and nickel adsorption and uptake in cattail as affected by iron and manganese plaque on the root surface. Communications in Soil Science and Plant Analysis, 34, 2763–2778.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, F., & Mao, D. (1998). Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): zinc uptake by Fe-deficient rice. Plant and Soil, 202(1), 33–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa J. Cutright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Cutright, T.J. & Duirk, S. Effect of Citric Acid, Rhizosphere Bacteria, and Plant Age on Metal Uptake in Reeds Cultured in Acid Mine Drainage. Water Air Soil Pollut 226, 2264 (2015). https://doi.org/10.1007/s11270-014-2264-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2264-7

Keywords

Navigation