Skip to main content
Log in

CO2 Production of Soil Microbiota in the Presence of Ametryne and Biofertilizer

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Ametryne is an herbicide applied to sugar cane cultures to prevent the emergence of weeds. It is a persistent compound that percolates ground and surface water thus impacting aquatic communities. In this study, we evaluated microbial activity in soil with increased concentrations of ametryne solution and commercial Microgeo biofertilizer. The soil subject to analysis was obtained from a sugar cane cultivation area. The concentration used in the experiment was ametryne 12 μg/L and 1 % of biofertilizer. It was used with the Bartha and Pramer respirometric method to quantify CO2 production and determine microbial activity. Complimentary phytotoxicity tests with Lactuca sativa seeds after respirometry experiments were conducted in the soluble fraction of the soil. According to the results, the addition of biofertilizer promoted microbial activity in the presence of ametryne and reduced ametryne phytotoxicity for Lactuca sativa seeds. Thus, Microgeo biofertilizer can potentially improve biodegradation of ametryne through both bioaugmentation and bioestimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander, M. (1999). Biodegradation and bioremediation (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Bartha, R., & Pramer, D. (1965). Features of flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Science, 100(1), 68–70.

    Article  CAS  Google Scholar 

  • CETESB—Environmental Sanitation and Technology Company. (1990). Soils–residuals biodegradation determination—Bartha respirometric method. São Paulo: Technical Standard L6.350.

    Google Scholar 

  • CETESB. Environmental Sanitation and Technology Company. (1984). Soil-collection and sample preparation procedures. São Paulo: Technical Standard L6. 245.

    Google Scholar 

  • Cruz, J. M., Tamada, I. S., Lopes, P. R. M., Montagnolli, R. N., & Bidoia, E. D. (2014). Biodegradation and phytotoxicity of biodiesel, diesel, and petroleum in soil. Water, Air, & Soil Pollution. doi:10.1007/s11270-014-1962-5.

    Google Scholar 

  • D’Andrea, P. A. (2002). Processo de compostagem líquida contínua- CLC e Biofertilizante. Microbiol Indústria e Comércio LTDA. (BR/SP). N° 2099 Registro PI0207342-0 A2.

  • Entry, A. J., & Emmingham, W. H. (1995). The influence of dairy manure on atrazine and 2, 4-dichlorophexyacetic acid mineralization un pasture soils. Canadian Journal of Soil Science. doi:10.4141/cjss95-054.

    Google Scholar 

  • Farré, M., Fernandez, J., Paez, M., Granada, L., Barba, L., Gutierrez, H. M., et al. (2002). Analysis and toxicity of methomyl and ametryn after biodegradation. Analytical and Bioanalytical Chemistry. doi:10.1007/s00216-002-1413-9.

    Google Scholar 

  • Fiúza, A. M. A., & Vila, M. C. C. (2004). An insight into soil bioremediation through respirometry. Environment International. doi:10.1016/j.envint.2004.09.013C.

    Google Scholar 

  • Gyuricza, V., Fodor, F., & Szigeti, Z. (2010). Phytotoxic effects of heavy metal contaminated soil reveal limitations of extract based ecotoxicological tests. Water, Air, and Soil Pollution. doi:10.1007/s11270-009-0228-0.

    Google Scholar 

  • Hubálek, T., Vosáhlová, S., Matĕjů, V., Kováčová, N., & Novotný, C. (2007). Ecotoxicity monitoring of hydrocarbon contaminated soil during bioremediation: a case study. Archives Environmental Contamination and Toxicology. doi:10.1007/s00244-006-0030-6.

    Google Scholar 

  • Jilani, G., Akram, A., Ali, R. M., Hafeez, F. Y., Shamsi, I. H., Chaudhry, A. N., et al. (2007). Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Annals of Microbiology, 57(2), 177–183.

    Article  CAS  Google Scholar 

  • Kasozi, G. N., Nkedi-Kizza, P., LI, Y., & Zimmerman, A. R. (2012). Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin. Environmental Pollution. doi:10.1016/j.envpol.2012.05.002.

    Google Scholar 

  • Kontchou, C. Y., & Gschwind, N. (1999). Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Applied and Environmental Microbiology, 60(12), 4297–4302.

    Google Scholar 

  • Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., et al. (2014). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. Journal Hazard Mater. doi:10.1016/j.jhazmat.2013.10.053.

    Google Scholar 

  • Medina, A. A., Adetutu, E. M., Aller, S., Weber, J., Patil, S. S., Sheppard, P. J., et al. (2012). Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long-term hydrocarbon-contaminated soil. Biodegradation. doi:10.1007/s10532-012-9563-8.

    Google Scholar 

  • Miles, R. A., & Doucette, W. J. (2001). Assesing the aerobic biodegradability of 14 hydrocarbons in two soils using a simple microcosm/respiration method. Chemosphere, 45(6–7), 1085–1090.

    Article  CAS  Google Scholar 

  • Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2009). Applied models to biodegradation kinetics of lubricant and vegetable oils in wastewater. International Biodeterioration & Biodegradation. doi:10.1016/j.ibiod.2008.10.005.

    Google Scholar 

  • Sandoval-Carrasco, C. A., Ahuatzi-Chacón, D., Galíndez-Mayer, J., Ruiz-Ordaz, N., Juárez-Ramírez, C., & Martínez- Jerónimo, F. (2013). Biodegradation of a mixture of the herbicides ametryn, and 2, 4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor. Bioresource Technology. doi:10.1016/j.biortech.2013.02.068.

    Google Scholar 

  • Satsuma, K. (2010). Mineralization of s-triazine herbicides by a newly isolated Nocardioides species strain DN36. Applied Microbiology Biotechnology, 86(5), 1585–1592.

    Article  CAS  Google Scholar 

  • Schmidt, S. K., Simkins, S., & Alexander, M. (1985). Models for the kinetics of biodegradation of organic compounds not supporting growth. Applied and Environmental Microbiology, 50(2), 323–331.

    CAS  Google Scholar 

  • Sobrero, M. C., & Ronco, A. (2004). Ensayo de toxicidade aguda com semillas de lechuga (Lactuca sativa L.). In G. C. Morales (Ed.), Ensayos toxicológicos y métodos de evaluacíon de calidad de aguas estandarización, intercalibración, resultados u aplicaciones (pp. 71–79). México: IMTA.

    Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586.

    Article  CAS  Google Scholar 

  • Wu, Y., Chiang, C., & Lu, C. (2004). Respirometric evaluation by graphical analysis for microbial systems. Environment Monitoring and Assessment, 92(1–3), 137–152.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Bidoia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Régo, A.P.J., Reganhan-Coneglian, C.M., Montagnolli, R.N. et al. CO2 Production of Soil Microbiota in the Presence of Ametryne and Biofertilizer. Water Air Soil Pollut 225, 2222 (2014). https://doi.org/10.1007/s11270-014-2222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2222-4

Keywords

Navigation