Skip to main content
Log in

Mechanisms and Factors Influencing Adsorption of Microcystin-LR on Biochars

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The adsorption of microcystin-LR (MCLR) by biochar has never been well understood. For the first time, the unconventional adsorption of hydrophilic MCLR on wood-based biochars was comprehensively investigated as a function of biochar properties, environmental temperature, solution pH, coexisting dissolved organic matter (DOM), and polar organic competitors. High-temperature-prepared biochar from 700 °C (BC-700) and low-temperature-prepared biochar from 300 °C (BC-300) were characterized with significantly different surface areas but similar alkaline nature. Despite a very low surface area, BC-300 exhibited very high adsorption capacity, which implies the important contribution of surface groups to biochar. MCLR adsorption on biochars was pH dependent and was strongly reduced by macromolecular DOM. Polycarboxylic aliphatic acids and 2-(2-hydroxyethyl) guanidinium cation, which are similar to specific structural groups in MCLR, exhibited an evident competitive effect. The results indicated that both carboxylic and guanidino groups of MCLR serve significant functions in MCLR adsorption to biochar. The adsorption mechanisms may be primarily related to the columbic attractions and the hydrogen bonding interactions between MCLR and biochar surface. In particular, the irreversible adsorption enhancement of MCLR was observed on BC-700, which suggests that biochar amendment can aid in immobilizing MCLR from water to sediment, thereby prolonging MCLR environmental fate in biochar-amended sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azargohar, R., & Dalai, A. K. (2006). Biochar as a precursor of activated carbon. Applied Biochemistry and Biotechnology, 131, 762–773.

    Article  CAS  Google Scholar 

  • Boutsika, L. G., Karapanagioti, H. K., & Manariotis, I. D. (2014). Aqueous mercury sorption by biochar from malt spent rootlets. Water, Air, & Soil Pollution, 225, 1805.

    Article  Google Scholar 

  • Chen, W., Song, L. R., Peng, L., Wan, N., Zhang, X. M., & Gan, N. Q. (2008a). Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions. Water Research, 42, 763–773.

    Article  CAS  Google Scholar 

  • Chen, B. L., Zhou, D. D., & Zhu, L. Z. (2008b). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42, 5137–5143.

    Article  CAS  Google Scholar 

  • Chun, Y., Sheng, G. Y., Chiou, C. T., & Xing, B. S. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 38, 4649–4655.

    Article  CAS  Google Scholar 

  • Cornelissen, G., & Gustafsson, Ö. (2004). Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environmental Science & Technology, 38, 148–155.

    Article  CAS  Google Scholar 

  • De Maagd, P. G. J., Hendriks, A. J., Seinen, W., & Sijm, D. T. H. M. (1999). pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR. Water Research, 33, 677–680.

    Article  Google Scholar 

  • Huang, W. J., Cheng, B. L., & Cheng, Y. L. (2007). Adsorption of microcystin-LR by three types of activated carbon. Journal of Hazardous Materials, 141, 115–122.

    Article  CAS  Google Scholar 

  • Lambert, T. W., Holmes, C. F. B., & Hrudey, S. E. (1996). Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment. Water Research, 30, 1411–1422.

    Article  CAS  Google Scholar 

  • Lawton, L. A., & Robertson, P. K. J. (1999). Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chemical Society Reviews, 28, 217–224.

    Article  CAS  Google Scholar 

  • Lehmann, J., & Joesph, S. (2009). Biochar for environmental management: science and technology. London: 420 Earthscan, Ltd.

    Google Scholar 

  • Lin, Y. R., & Teng, H. S. (2002). Mesoporous carbons from waste tire char and their application in wastewater discoloration. Microporous and Mesoporous Materials, 54, 167–174.

    Article  CAS  Google Scholar 

  • Liu, G. L., Qian, Y., Dai, S. G., & Feng, N. (2008). Adsorption of microcystin LR and LW on suspended particulate matter (SPM) at different pH. Water, Air, & Soil Pollution, 192, 67–76.

    Article  CAS  Google Scholar 

  • Miller, M. J., Critchley, M. M., Hutson, J., & Fallowfield, H. J. (2001). The adsorption of cyanobacterial hepatotoxins from water onto soil during batch experiments. Water Research, 35, 1461–1468.

    Article  CAS  Google Scholar 

  • Mohamed, Z. A., El-Sharouny, H. M., & Ali, W. S. (2007). Microcystin concentrations in the Nile river sediments and removal of microcystin-LR by sediments during batch experiments. Archives of Environmental Contamination and Toxicology, 52, 489–495.

    Article  CAS  Google Scholar 

  • Morris, R. J., Williams, D. E., Luu, H. A., Holmes, C. F., Andersen, R. J., & Calvert, S. E. (2000). The adsorption of microcystin-LR by natural clay particles. Toxicon, 38, 303–308.

    Article  CAS  Google Scholar 

  • Nishio, M. (2011). The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Physical Chemistry Chemical Physics, 13, 13873–13900.

    Article  CAS  Google Scholar 

  • Park, J. H., Choppala, G., Lee, S. J., Bolan, N., Chung, J. W., & Edraki, M. (2013). Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water, Air, & Soil Pollution, 224, 1711.

    Article  Google Scholar 

  • Pendleton, P., Schumann, R., & Wong, S. H. (2001). Microcystin-LR adsorption by activated carbon. Journal of Colloid and Interface Science, 240, 1–8.

    Article  CAS  Google Scholar 

  • Qiu, Y. P., Cheng, H. Y., Xu, C., & Sheng, G. D. (2008). Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Research, 42, 567–574.

    Article  CAS  Google Scholar 

  • Qiu, Y. P., Xiao, X. Y., Cheng, H. Y., Zhou, Z. L., & Sheng, G. D. (2009). Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter. Environmental Science & Technology, 143, 4973–4978.

    Article  Google Scholar 

  • Qiu, Y. P., Wu, M. W., Jiang, J., Li, L., & Sheng, G. D. (2013). Enhanced irreversible sorption of carbaryl to soils amended with crop-residue-derived biochar. Chemosphere, 93, 69–74.

    Article  CAS  Google Scholar 

  • Sathishkumar, M., Pavagadhi, S., Vijayaraghavan, K., Balasubramanian, R., & Ong, S. L. (2011). Concomitant uptake of microcystin-LR and -RR by peat under various environmental conditions. Chemical Engineering Journal, 172, 754–762.

    Article  CAS  Google Scholar 

  • Shuang, C. D., Li, P. H., Li, A. M., Zhou, Q., Zhang, M. C., & Zhou, Y. (2012). Quaternized magnetic microspheres for the efficient removal of reactive dyes. Water Research, 46, 4417–4426.

    Article  CAS  Google Scholar 

  • Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research, 48, 516–525.

    Article  CAS  Google Scholar 

  • Teixidó, M., Pignatello, T. T., Beltrán, J. L., Granados, M., & Peccia, J. (2011). Speciation of the ionizable antibiotic sulfamethazine on black carbon. Environmental Science & Technology, 45, 10020–10027.

    Article  Google Scholar 

  • Teng, W., Wu, Z. X., Feng, D., Fan, J. W., Wang, J. X., Wei, H., Song, M. J., & Zhao, D. Y. (2013). Rapid and efficient removal of microcystins by ordered mesoporous silica. Environmental Science & Technology, 47, 8633–8641.

    CAS  Google Scholar 

  • Thurman, E. M., & Malcol, R. L. (1981). Preparative isolation of aquatic humic substances. Environmental Science & Technology, 15, 463–466.

    Article  CAS  Google Scholar 

  • Umezawa, Y., & Nishio, M. (2013). Guanidinium group acts as effective CH acceptor (π-donor) in the CH/π hydrogen bond: a database study. Supramolecular Chemistry, 25, 581–585.

    Article  CAS  Google Scholar 

  • Wernersson, E., Heyda, J., Vazdar, M., Lund, M., Mason, P. E., & Jungwirth, P. (2011). Orientational dependence of the affinity of guanidinium ions to the water surface. The Journal of Physical Chemistry B, 115, 12521–12526.

    Article  CAS  Google Scholar 

  • Wu, X. Q., Xiao, B. D., Li, R. H., Wang, C. B., Huang, J. T., & Wang, Z. (2011). Mechanisms and factors affecting sorption of microcystins onto natural sediments. Environmental Science & Technology, 45, 2641–2647.

    Article  CAS  Google Scholar 

  • Xiao, X. Y., Li, F. L., Huang, J. X., Sheng, G. D., & Qiu, Y. P. (2012). Reduced adsorption of propanil to black carbon: effect of dissolved organic matter loading mode and molecule size. Environmental Toxicology and Chemistry, 31, 1187–1193.

    Article  CAS  Google Scholar 

  • Yang, Y. N., Chun, Y., Sheng, G. Y., & Huang, M. S. (2004). pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir, 20, 6736–6741.

    Article  CAS  Google Scholar 

  • Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102, 3488–3497.

    Article  CAS  Google Scholar 

  • Zhang, X. K., Wang, H. L., He, L. Z., Lu, K. P., Sarmah, A., Li, J. W., Bolan, N. S., Pei, J. C., & Huang, H. G. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472–8483.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of Zhejiang Province of China (Y5110268) and the National Natural Science Foundation of China (21177113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Qiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Qiu, Y., Huang, J. et al. Mechanisms and Factors Influencing Adsorption of Microcystin-LR on Biochars. Water Air Soil Pollut 225, 2220 (2014). https://doi.org/10.1007/s11270-014-2220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2220-6

Keywords

Navigation