Skip to main content
Log in

Discoloration and Organic Matter Removal from Coffee Wastewater by Electrochemical Advanced Oxidation Processes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The coffee agro-industry generates a large volume of wastewater that is notable for its high organic strength as well as its color content. Due to the seasonal nature of the harvest (3–4 months per year), this particular industrial waste needs a treatment method that is both reliable and fast (in terms of start-up time). As part of investigating a system capable of treating a coffee wastewater, this research evaluated four electrochemical advanced oxidation processes (EAOPs) using boron-doped diamond (BDD) electrodes. The processes were anodic oxidation (AO), anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), and photoelectro-Fenton (PEF). Experimental conditions were as follows: 40 mA cm−2 current density (all EAOPs), 0.3 mmol Fe2+ L−1 (Fenton systems), 300 mL air min−1 (AO-H2O2, EF, PEF), and 500 μW cm−2 UV irradiation (photo-Fenton systems). The performance of the four EAOP treatment methods (in terms of color and organic carbon removal) was compared against two conventional chemical oxidation methods, namely, Fenton and photo-Fenton. The research indicated that the four EAOPs were better at removing color (89–93 %) and total organic carbon (TOC) (73–84 %) than the respective chemical Fenton (58 and 4.8 %) and photo-Fenton (61 and 7 %) methods. The trend in performance was as follows: AO-H2O2 > AO > PEF ≈ EF. It appeared that the ferrous iron reagent formed a dark-colored complex with some coffee components, diminishing the effect of Fenton reactions. In addition, the dark color of the wastewater limited the effect of light in the UV-Fenton processes. Analysis showed that acceptable levels of Fe2+ (0.3 mmol L−1) and energy (0.082–0.098 kWh g−1 TOC) were required by the EAOPs after 4-h treatment time. In conclusion, the use of electrochemical methods (equipped with BDD electrodes) seems a promising method for the effective treatment of coffee wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez-Pugliese, C. E., Moreno-Wiedman, P., Machuca-Martínez, F., & Marriaga-Cabrales, N. (2011). Distillery wastewater treated by electrochemical oxidation with boron-doped diamond electrodes. Journal of Advance Oxidation Technology, 14(2), 213–219.

    CAS  Google Scholar 

  • APHA, American Public Health Association. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Balakai, V. I., Arzumanova, A. V., & Balakai, K. V. (2010). Alkalization of the near-cathode layer in electrodeposition of nickel from a chloride electrode. Russian Journal of Applied Chemistry, 83, 65–71.

    Article  CAS  Google Scholar 

  • Bejankiwar, R. S., Lokesh, K. S., & Gowda, T. P. (2003). Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method. Journal of Environmental Sciences (China), 15, 323–327.

    CAS  Google Scholar 

  • Beyene, A., Yemane, D., Addis, T., Assayie, A. A., & Triest, L. (2014). Experimental evaluation of anaerobic digestion for coffee wastewater treatment and its biomethane recovery potential. International Journal of Environmental Science and Technology, 11(7), 1881–1886.

    Article  CAS  Google Scholar 

  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109, 6570–6631.

    Article  CAS  Google Scholar 

  • Brillas, E., Sirés, I., & Cabot, P. L. (2010). Use of both anode and cathode reactions in wastewater. In C. Comninellis & G. Chen (Eds.), Electrochemistry for the environment (pp. 515–548). New York: Springer.

    Chapter  Google Scholar 

  • Chanakya, H. N., & De Alwis, A. A. P. (2004). Environmental issues and management in primary coffee processing. Process Safety and Environmental Protection, 82, 291–300.

    Article  CAS  Google Scholar 

  • Chapagain, A. K., & Hoekstra, A. Y. (2007). The water footprint of coffee and tea consumption in the Netherland. Ecological Economics, 64, 109–118.

    Article  Google Scholar 

  • Costa, C. R., Montilla, F., Morallón, E., & Olivi, P. (2010). Electrochemical oxidation of synthetic tannery wastewater in chloride-free aqueous media. Journal of Hazardous Materials, 180, 429–435.

    Article  CAS  Google Scholar 

  • De Oliveira, R. A., & Bruno, N. M. N. (2013). Start-up of horizontal anaerobic reactors with sludge blanket and fixed bed for wastewater treatment from coffee processing by wet method. Engineering Agricuture, 33(2), 353–366.

    Google Scholar 

  • Esquivel, P., & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46, 488–495.

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization), (2010). Medium-term prospects for agricultural commodities by Economical and Social Development Department. FAO Corporate Document Repository. http://www.fao.org/docrep/006/y5143e/y5143e00.htm#Contents. Accessed 5 July 2014.

  • Fia, R., De Matos, A. T., & Fia, F. R. L. (2013). Biological systems coupled for treating wastewater from processing coffee cherries: I—removal of organic matter. Acta Science and Technology, 35(2), 205–211.

    Article  CAS  Google Scholar 

  • Garza-Campos, B. R., Guzmán-Mar, J. L., Hinojosa, R. L., Brillas, E., Hernández-Ramírez, A., & Ruiz-Ruiz, E. J. (2014). Coupling of solar photoelectro-Fenton with a BDD anode and solar heterogeneous photocatalysis for the mineralization of the herbicide atrazine. Chemosphere, 97, 26–33.

    Article  CAS  Google Scholar 

  • Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J. P., & Schorr-Galindo, S. (2007). Impact of “ecological” post-harvest processing on the volatile fraction of coffee beans: I. green coffee. Journal of Food Composites Analysis, 20, 289–296.

    Article  CAS  Google Scholar 

  • Haddis, A., & Devi, R. (2008). Effect of effluent generated from coffee processing plant on the water bodies and human health in its vicinity. Journal of Hazardous Materials, 152, 259–262.

    Article  CAS  Google Scholar 

  • Indermuhle, C., Martín de Vidales, M. J., Sáez, C., Robles, J., Cañizares, P., García-Reyes, J. F., Molina-Díaz, A., Comninellis, C., & Rodrigo, M. A. (2013). Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere, 93, 1720–1725.

    Article  CAS  Google Scholar 

  • International Trade Centre, (2011). The coffee exporter’s guide, third ed. Geneva: ITC http://www.intracen.org/workarea/downloadasset.aspx?id=58068. Accessed 6 Dec 2013.

  • Isarain-Chávez, E., Garrido, J. A., Rodríguez, R. M., Centellas, F., Arias, C., Cabot, P. L., & Brillas, E. (2011). Mineralization of metoprolol by electro-Fenton and photoelectro-Fenton processes. Journal of Physical Chemistry A, 115, 1234–1242.

    Article  Google Scholar 

  • Kondo, M. M., Leite, K. U. C. G., Silva, M. R. A., & Reis, A. D. P. (2010). Fenton and photo-Fenton processes coupled to UASB to treat coffee pulping wastewater. Separation Science and Technology, 45, 1506–1511.

    Article  CAS  Google Scholar 

  • Marselli, B., Garcia-Gomez, J., Michaud, P. A., Rodrigo, M. A., & Comninellis, C. (2003). Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. Journal of the Electrochemical Society, 150, D79–D83.

    Article  CAS  Google Scholar 

  • Martínez-Huitle, C. A., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalogue B-Environment, 87, 105–145.

    Article  Google Scholar 

  • Monteagudo, J. M., Durán, A., Aguirre, M., & San, M. I. (2011). Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process. Journal of Hazardous Materials, 185, 131–139.

    Article  CAS  Google Scholar 

  • Moreira, F. C., García-Segura, S., Vilar, V. J. P., Boaventura, R. A. R., & Brillas, E. (2013). Decolorization and mineralization of sunset yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Applied Catalogue B-Environment, 142–143, 877–890.

    Article  Google Scholar 

  • Murthy, P. S., & Naidu, M. M. (2012). Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology, 5, 897–903.

    Article  CAS  Google Scholar 

  • Narita, Y., & Inouye, K. (2013). Degradation kinetics of chlorogenic acid at various pH values and effects of ascorbic acid and epigallocatechin gallate on its stability under alkaline conditions. Journal of Agricultural and Food Chemistry, 61, 966–972.

    Article  CAS  Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409, 4141–4166.

    Article  CAS  Google Scholar 

  • Oturan, N., Brillas, E., & Oturan, M. A. (2012). Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environmental Chemistry Letters, 10, 165–170.

    Article  CAS  Google Scholar 

  • Panizza, M., Brillas, E., & Comninellis, C. (2008). Application of Boron-doped diamond electrodes for wastewater treatment. Journal of Environmental Engineering and Management, 18, 139–153.

    CAS  Google Scholar 

  • Poznyak, T., Tapia, R., Vivero, J., & Chairez, I. (2006). Effect of pH to the decomposition of aqueous phenols mixture by ozone. Journal of the Mexican Chemical Society, 50, 28–35.

    CAS  Google Scholar 

  • Ruiz, E. J., Hernández-Ramírez, A., Peralta-Hernández, J. M., Arias, C., & Brillas, E. (2011). Application of solar photoelectro-Fenton technology to azo dyes mineralization: effect of current density, Fe2+ and dye concentration. Chemical Engineering Journal, 171, 385–392.

    Article  CAS  Google Scholar 

  • Saravanan, K. R., Sathyamoorthi, S., Velayutham, D., & Suryanarayanan, V. (2012). Voltammetric investigations on the relative deactivation of boron-doped diamond, glassy carbon and platinum electrodes during the anodic oxidation of substituted phenols in room temperature ionic liquids. Electrochimica Acta, 69, 71–78.

    Article  CAS  Google Scholar 

  • Satori, H., & Kawase, Y. (2014). Decolorization of dark brown colored coffee effluent using zinc oxide particles: the role of dissolved oxygen in degradation of colored compounds. Journal of Environmental Management, 139, 172–179.

    Article  CAS  Google Scholar 

  • Selvamurugan, M., Doraisamy, P., & Maheswari, M. (2010a). An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process. Ecological Engineering, 36, 1686–1690.

    Article  Google Scholar 

  • Selvamurugan, M., Doraisamy, P., Maheswari, M., & Nandakumar, N. B. (2010b). High rate anaerobic treatment of coffee processing wastewater using upflow anaerobic hybrid reactor. Iranian Journal of Environmental Health Science Engineering, 7(2), 129–136.

    CAS  Google Scholar 

  • Sirés, I., & Brillas, E. (2012). Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environmental International, 40, 212–229.

    Article  Google Scholar 

  • Tokumura, M., Ohta, A., Znad, H. T., & Kawase, Y. (2006). UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction. Water Research, 40, 3775–3784.

    Article  CAS  Google Scholar 

  • Tokumura, M., Znad, H. T., & Kawase, Y. (2008). Decolorization of dark brown colored coffee effluent by solar photo-Fenton reaction: effect of solar light dose on decolorization kinetics. Water Research, 42, 4665–4673.

    Article  CAS  Google Scholar 

  • Tokumura, M., Sekine, M., Morito, Y., & Kawase, Y. (2011). Decolorization and mineralization of Oolong tea polyphenols in colored soft drink wastewater by photo Fenton reaction. Water Science and Technology, 63(9), 1894–1898.

    Article  CAS  Google Scholar 

  • Trovó, A. G., Silva, T. F. S., Gomes, O., Jr., Machado, A. E. H., Borges, N. W., Muller, P. S., Jr., & Daniel, D. (2013). Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design. Chemosphere, 90, 170–175.

    Article  Google Scholar 

  • Welcher, F. J. (1975). Standard methods of chemical analysis, vol. 2, part B (6th ed.). New York: R.E. Krieger Publishers Co.

    Google Scholar 

  • Yamal-Turbay, E., Graells, M., & Pérez-Moya, M. (2012). Systematic assessment of the influence of hydrogen peroxide dosage on caffeine degradation by the photo-Fenton process. Industrial and Engineering Chemistry Research, 5, 4770–4778.

    Article  Google Scholar 

  • Zayas, P. T., Geissler, G., & Hernández, F. (2007). Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. Journal of Environmental Sciences (China), 19, 300–305.

    Article  CAS  Google Scholar 

  • Zhao, M., Wang, H., Yang, B., & Tao, H. (2010). Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chemistry, 120, 1138–1142.

    Article  CAS  Google Scholar 

  • Zhou, M., Särkkä, H., & Sillanpää, M. (2011). A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Separation and Purification Technology, 78, 290–297.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted at El Colegio de la Frontera Sur (ECOSUR) in Tapachula, Chiapas, Mexico. We thank ECOSUR for the facilities and for a postdoctoral fellowship granted to M. Villanueva-Rodríguez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Villanueva-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanueva-Rodríguez, M., Bello-Mendoza, R., Wareham, D.G. et al. Discoloration and Organic Matter Removal from Coffee Wastewater by Electrochemical Advanced Oxidation Processes. Water Air Soil Pollut 225, 2204 (2014). https://doi.org/10.1007/s11270-014-2204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2204-6

Keywords

Navigation