Skip to main content
Log in

High-Performance Removal of Phosphate from Water by Graphene Nanosheets Supported Lanthanum Hydroxide Nanoparticles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A novel high-capacity phosphate removal adsorbent of graphene nanosheets (GNS) supported lanthanum hydroxide (LaOH) is prepared. The phosphate adsorption performance for GNS-LaOH is examined by a batch adsorption method from aqueous solutions. The Freundlich and Langmuir models are used to simulate the sorption equilibrium, which reveal that the Langmuir model has a better correlation with the experimental data. The maximum adsorption capacity is calculated to be 41.96 mg/g. The kinetic data from the adsorption of phosphate is suggested as the pseudo-second-order model, and the multi-linearity adsorption process is observed in the intraparticle diffusion model, indicating that a chemisorption process is dominant in the adsorption of phosphate. The phosphate adsorption mechanism is explored by analyzing the Fourier transform infrared spectroscopy (FT-IR) and the relationship between the adsorption amount and the pH value of phosphate solution. Ligand exchange and electrostatic and Lewis acid–base interactions are determined to be three main factors for phosphate adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aghazadeh, M., Golikand, A. N., Ghaemi, M., & Yousefi, T. (2011). A novel lanthanum hydroxide nanostructure prepared by cathodic electrodeposition. Materials Letters, 65(10), 1466–1468.

    Article  CAS  Google Scholar 

  • Biswas, B. K., Inoue, K., Ghimire, K. N., Ohta, S., Harada, H., Ohto, K., & Kawakita, H. (2007). The adsorption of phosphate from an aquatic environment using metal-loaded orange waste. Journal of Colloid and Interface Science, 312(2), 214–223.

    Article  CAS  Google Scholar 

  • Bondioli, F., Ferrari, A., Lusvarghi, L., Manfredini, T., Nannarone, S., Pasquali, L., & Selvaggi, G. (2005). Synthesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route. Journal of Materials Chemistry, 15(10), 1061–1066.

    Article  CAS  Google Scholar 

  • Borgnino, L., Avena, M., & De Pauli, C. (2009). Synthesis and characterization of Fe (III)-montmorillonites for phosphate adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341(1), 46–52.

    Article  CAS  Google Scholar 

  • Chen, J., Kong, H., Wu, D., Chen, X., Zhang, D., & Sun, Z. (2007). Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. Journal of Hazardous Materials, 139(2), 293–300.

    Article  CAS  Google Scholar 

  • Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., & Hirotsu, T. (2006). Phosphate adsorption on synthetic goethite and akaganeite. Journal of Colloid and Interface Science, 298(2), 602–608.

    Article  CAS  Google Scholar 

  • Chubar, N., Kanibolotskyy, V., Strelko, V., Gallios, G., Samanidou, V., Shaposhnikova, T., Milgrandt, V., & Zhuravlev, I. (2005). Adsorption of phosphate ions on novel inorganic ion exchangers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255(1), 55–63.

    Article  CAS  Google Scholar 

  • Clesceri, L., Greenberg, A., Eaton, A., & Frason, M. (1998). Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation. Applied and Environmental Microbiology, 41, 1152–1158.

    Google Scholar 

  • de-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38(19), 4222–4246.

    Article  CAS  Google Scholar 

  • Genz, A., Kornmüller, A., & Jekel, M. (2004). Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Research, 38(16), 3523–3530.

    Article  CAS  Google Scholar 

  • Kim, E. H., Yim, S. B., Jung, H. C., & Lee, E. J. (2006). Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material. Journal of Hazardous Materials, 136(3), 690–697.

    Article  CAS  Google Scholar 

  • Krishnan, K. A., & Haridas, A. (2008). Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. Journal of Hazardous Materials, 152(2), 527–535.

    Article  CAS  Google Scholar 

  • Kuzawa, K., Jung, Y.-J., Kiso, Y., Yamada, T., Nagai, M., & Lee, T.-G. (2006). Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent. Chemosphere, 62(1), 45–52.

    Article  CAS  Google Scholar 

  • Li, L., Jiang, W., Pan, H., Xu, X., Tang, Y., Ming, J., Xu, Z., & Tang, R. (2007). Improved luminescence of lanthanide (III)-doped nanophosphors by linear aggregation. The Journal of Physical Chemistry C, 111(11), 4111–4115.

    Article  CAS  Google Scholar 

  • Li, H., Ru, J., Yin, W., Liu, X., Wang, J., & Zhang, W. (2009). Removal of phosphate from polluted water by lanthanum doped vesuvianite. Journal of Hazardous Materials, 168(1), 326–330.

    Article  CAS  Google Scholar 

  • Mino, T., Van Loosdrecht, M. C. M., & Heijnen, J. J. (1998). Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research, 32(11), 3193–3207.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon. Journal of Colloid and Interface Science, 280(2), 359–365.

    Article  CAS  Google Scholar 

  • Ning, P., Bart, H.-J., Li, B., Lu, X., & Zhang, Y. (2008). Phosphate removal from wastewater by model-La (III) zeolite adsorbents. Journal of Environmental Sciences, 20(6), 670–674.

    Article  CAS  Google Scholar 

  • Offeman, R., & Hummers, W. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339–1339.

    Article  Google Scholar 

  • Oguz, E. (2005). Thermodynamic and kinetic investigations of PO4 3 adsorption on blast furnace slag. Journal of Colloid and Interface Science, 281(1), 62–67.

    Article  CAS  Google Scholar 

  • Ou, E., Zhou, J., Mao, S., Wang, J., Xia, F., & Min, L. (2007). Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308(1), 47–53.

    Article  CAS  Google Scholar 

  • Petit, C., & Bandosz, T. J. (2009). Graphite oxide/polyoxometalate nanocomposites as adsorbents of ammonia. The Journal of Physical Chemistry C, 113(9), 3800–3809.

    Article  CAS  Google Scholar 

  • Richard, A. N., & Ronald, O. K. (1997). The handbook of infrared and Raman spectra of inorganic compounds and organic salts. San Diego: Academic.

    Google Scholar 

  • Shin, E. W., Han, J. S., Jang, M., Min, S.-H., Park, J. K., & Rowell, R. M. (2004). Phosphate adsorption on aluminum-impregnated mesoporous silicates: surface structure and behavior of adsorbents. Environmental Science & Technology, 38(3), 912–917.

    Article  CAS  Google Scholar 

  • Soejoko, D., & Tjia, M. (2003). Infrared spectroscopy and X ray diffraction study on the morphological variations of carbonate and phosphate compounds in giant prawn (Macrobrachium rosenbergii) skeletons during its moulting period. Journal of Materials Science, 38(9), 2087–2093.

    Article  CAS  Google Scholar 

  • Wang, S.-L., Cheng, C.-Y., Tzou, Y.-M., Liaw, R.-B., Chang, T.-W., & Chen, J.-H. (2007). Phosphate removal from water using lithium intercalated gibbsite. Journal of Hazardous Materials, 147(1), 205–212.

    Article  CAS  Google Scholar 

  • Wu, R. S., Lam, K., Lee, J., & Lau, T. (2007). Removal of phosphate from water by a highly selective La (III)-chelex resin. Chemosphere, 69(2), 289–294.

    Article  CAS  Google Scholar 

  • Xu, X., Gao, B., Wang, W., Yue, Q., Wang, Y., & Ni, S. (2009). Adsorption of phosphate from aqueous solutions onto modified wheat residue: characteristics, kinetic and column studies. Colloids and Surfaces, B: Biointerfaces, 70(1), 46–52.

    Article  CAS  Google Scholar 

  • Yan, L.-G., Xu, Y.-Y., Yu, H.-Q., Xin, X.-D., Wei, Q., & Du, B. (2010). Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites. Journal of Hazardous Materials, 179(1), 244–250.

    Article  CAS  Google Scholar 

  • Yang, Y., Chun, Y., Sheng, G., & Huang, M. (2004). pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir, 20(16), 6736–6741.

    Article  CAS  Google Scholar 

  • Yang, J., Zhou, L., Zhao, L., Zhang, H., Yin, J., Wei, G., Qian, K., Wang, Y., & Yu, C. (2011). A designed nanoporous material for phosphate removal with high efficiency. Journal of Materials Chemistry, 21(8), 2489–2494.

    Article  CAS  Google Scholar 

  • Yeon, K.-H., Park, H., Lee, S.-H., Park, Y.-M., Lee, S.-H., & Iwamoto, M. (2008). Zirconium mesostructures immobilized in calcium alginate for phosphate removal. Korean Journal of Chemical Engineering, 25(5), 1040–1046.

    Article  CAS  Google Scholar 

  • Yildiz, E. (2004). Phosphate removal from water by fly ash using crossflow microfiltration. Separation and Purification Technology, 35(3), 241–252.

    Article  CAS  Google Scholar 

  • Yuan, X., Pan, G., Tian, B., & Chen, H. (2007). Study on phosphorus (P) fixation in the sediment of lake using the clays modified by LaCl3. Huan jing ke xue = Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui “Huan jing ke xue” bian ji wei yuan hui], 28(2), 403.

    CAS  Google Scholar 

  • Zeng, L., Li, X., & Liu, J. (2004). Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38(5), 1318–1326.

    Article  CAS  Google Scholar 

  • Zhang, J., Shen, Z., Shan, W., Chen, Z., Mei, Z., Lei, Y., & Wang, W. (2010). Adsorption behavior of phosphate on lanthanum (III) doped mesoporous silicates material. Journal of Environmental Sciences, 22(4), 507–511.

    Article  CAS  Google Scholar 

  • Zhang, L., Wan, L., Chang, N., Liu, J., Duan, C., Zhou, Q., Li, X., & Wang, X. (2011a). Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide. Journal of Hazardous Materials, 190(1), 848–855.

    Article  CAS  Google Scholar 

  • Zhang, J., Shen, Z., Shan, W., Mei, Z., & Wang, W. (2011b). Adsorption behavior of phosphate on lanthanum (III)-coordinated diamino-functionalized 3D hybrid mesoporous silicates material. Journal of Hazardous Materials, 186(1), 76–83.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhou, Q., Liu, J., Chang, N., Wan, L., & Chen, J. (2012). Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber. Chemical Engineering Journal, 185, 160–167.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (21207085, 51271105), the research and innovation project of Shanghai Municipal Education Commission (14YZ014), and the Shanghai Municipal Government (11JC1403900, 11SG38, S30109). The authors also thank Lab for Microstructure, Instrumental Analysis and Research Center, Shanghai University, for materials characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Zhang or Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Gao, Y., Zhou, Q. et al. High-Performance Removal of Phosphate from Water by Graphene Nanosheets Supported Lanthanum Hydroxide Nanoparticles. Water Air Soil Pollut 225, 1967 (2014). https://doi.org/10.1007/s11270-014-1967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1967-0

Keywords

Navigation