Skip to main content
Log in

Selecting and Characterizing Bacterial Consortia with the Potential of Fixing CO2 and Removing H2S in a Biogas Atmosphere

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biogas must be pretreated before its use; thus, both physical and chemical methods have been implemented to remove the fuel’s principal pollutants (CO2 and H2S). Additional removal methods that use microorganisms’ biological processes to eliminate pollutants have also emerged. A selection was made from six bacterial isolates to obtain consortia that removed CO2 and eventually H2S through the enrichment of cultures and the construction of clone libraries of gene 16S ribosomal DNA (rDNA). The results indicate that the principal differences between consortia were determined in the culture medium. C5 and C6 consortia had photosynthetic biomass 1.42 and 1.52 μg/ml, respectively, and concentration of dissolved CO2 100.6 and 99.1 mg/l, respectively. The clone libraries showed that Rhodopseudomonas sp. had percentages 46.6, 42.5, and 86.8 % in C4, C5, and C6, respectively; Xanthobacter sp., 24.5 %, Castellaniella sp., 18 % in C5, and Sphingobium sp., 39.2 % in C4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achenbach, L., Carey, J., & Madigan, M. (2001). Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Applied Environmental Microbiology, 67(7), 2922–2926.

    Article  CAS  Google Scholar 

  • Alimahmoodi, M., & Mulligan, C. (2008). Anaerobic bioconversion of carbon dioxide to biogas in an upflow anaerobic sludge blanket reactor. Journal of the Air & Waste Management Association, 58(1), 95–103.

    Article  CAS  Google Scholar 

  • Atamna-Ismaeel, N., Finkel, O., Glaser, F., von Mering, C., Vorholt, J., Koblížek, M., et al. (2012). Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environmental Microbiology Reports, 4(2), 209–216.

    Article  CAS  Google Scholar 

  • Balkwill, D., Fredrickson, J., Romine, M. (2006). Sphingomonas and related genera. In: Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E. (Eds) Prokaryotes (pp. 605–629). Vol 7, 3rd Edn. Springer Science + Business Media, LLC, New York

  • Brenner, K., You, L., & Arnold, H. (2008). Engineering microbial consortia: a new frontier in synthetic biology. Review. Trends in Biotechnology, 26(9), 483–489.

    Article  CAS  Google Scholar 

  • Butow, B., & Bergstein-Ben Dan, T. (1991). Effects of growth conditions on acetate utilization by Rhodopseudomonas palustris isolated from a freshwater lake. Microbial Ecology, 22(1), 317–328.

    Article  CAS  Google Scholar 

  • Chi, X., Zhang, J., Zhao, S., & Zhou, N. (2013). Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environmental Pollution, 172(1), 33–41.

    Article  CAS  Google Scholar 

  • Clesceri, L.S., Greenberg, A.E., Eaton, A.D. (1998). Standard methods for the examination of water and wastewater. APHA 20th Edn Washington, DC, USA.

  • Cunliffe, M., & Kertesz, M. (2006). Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environmental Pollution, 144(1), 228–237.

    Article  CAS  Google Scholar 

  • Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewable resources. An introduction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Book  Google Scholar 

  • Gerardi, M. (2006). Wastewater bacteria. United States of America: John Wiley & Sons Inc.

    Book  Google Scholar 

  • Henshaw, P., & Zhu, W. (2001). Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Research, 35(15), 3605–3610.

    Article  CAS  Google Scholar 

  • Imhoof, J. (2006). The phototrophic alpha-proteobacteria. In: Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E. (Eds) Prokaryotes (pp. 42–64). Vol 5, 3rd Edn Springer Science + Business Media, LLC, New York

  • Jensen, A., & Webb, C. (1995). Treatment of H2S-containing gases: a review of microbiological alternatives. Enzime and Microbial Technology, 17(1), 2–10.

    Article  CAS  Google Scholar 

  • Kamp, A., Stief, P., & Schulz-Vogt, H. (2006). Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Applied Environmental Microbiology, 72(7), 4755–476.

    Article  CAS  Google Scholar 

  • Karpinets, T., Pelletier, D., Pan, C., Uberbacher, E., et al. (2009). Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris. PLoS ONE, 4(2), 1–10.

    Article  Google Scholar 

  • Kleerebezem, R., & van Loosdrecht, M. C. M. (2007). Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, 18(3), 207–212.

    Article  CAS  Google Scholar 

  • Larimer, F., Chain, P., Hauser, L., et al. (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnology, 22(1), 55–61.

    Article  CAS  Google Scholar 

  • Liu, Q., Ten, L., Wan-Taek Im, W., & Lee, S. (2008). Castellaniella caeni sp. nov., a denitrifying bacterium isolated from sludge of a leachate treatment plant. International Journal of Systematic and Evolutionary Microbiology, 58(9), 2141–2146.

    Article  CAS  Google Scholar 

  • Liu, J., Wu, W., Chen, C., Sun, F., & Chen, Y. (2011). Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems. Applied Microbiology and Biotechnology, 91(6), 1659–1675.

    Article  CAS  Google Scholar 

  • Meijer, W., Croes, L., Jenni, B., et al. (1990). Characterization of Xanthobacter strains H4-14 and 25a and enzyme profiles after growth under autotrophic and heterotrophic conditions. Archives of Microbiology, 153(4), 360–367.

    Article  CAS  Google Scholar 

  • Nielsen, A., Vollertsen, J., & Hvitved-Jacobsen, T. (2003). Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks. Environmental Science Technology, 37(17), 3853–3858.

    Article  CAS  Google Scholar 

  • Panza, D., & Belgiorno, V. (2010). Hydrogen sulphyde removal from landfill gas. Process Safety and Environmental Protection, 88(6), 420–424.

    Article  CAS  Google Scholar 

  • Ramirez, M., Gómez, J. M., Aroca, G., & Cantero, D. (2009). Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresource Technology, 100(21), 4989–4995.

    Article  CAS  Google Scholar 

  • Sarkar, P., Meghvanshi, M., & Singh, R. (2011). Microbial consortium: a new approach in effective degradation of organic kitchen wastes. International Journal of Environmental Science and Development, 2(3), 171–174.

    Google Scholar 

  • Syed, M., Soreanu, G., Falleta, P., Béland, M. (2006). Removal of hydrogen sulfide from gas streams using biological processes. A review. Canadian Biosystems Engineering, 48, 2.1-2.14

    Google Scholar 

  • Tang, K., Baskaran, V., & Nemati, M. (2009). Bacteria oh the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal, 44(1), 73–94.

    Article  CAS  Google Scholar 

  • Thauer, R. (2007). A fifth pathway of carbon fixation. Science, 318(5857), 1732–1733.

    Article  CAS  Google Scholar 

  • Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849–860.

    Article  CAS  Google Scholar 

  • Weisburg, W., Barns, S., Pelletier, D., & Lane, D. (1991). 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703.

    CAS  Google Scholar 

  • Yan, Q., Wang, Y., Li, S., Li, W., Hong, Q. (2010). Sphingobium qiguoniisp. nov., a carbaryl degrading bacterium isolated from a wastewater treatment system. International Journal of Systematic and Evolutionary Microbiology, 60(12), 2724–2728.

    Google Scholar 

  • Zhang, W., Yue, B., Wang, Q., Huang, Z., Huang, Q., & Zhang, Z. (2011). Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills. Journal of Environmental Sciences, 23(11), 1770–1777.

    Article  CAS  Google Scholar 

  • Zuroff, T., & Curtis, W. (2012). Developing symbiotic consortia for lignocellulosic biofuel production. Applied Microbiology and Biotechnology, 93(4), 1423–1435.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by FONDEF project no. D07 I-1008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madelaine Quiroz E..

Additional information

Gas concentration percentage, (v/v)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiroz E., M. Selecting and Characterizing Bacterial Consortia with the Potential of Fixing CO2 and Removing H2S in a Biogas Atmosphere. Water Air Soil Pollut 225, 1934 (2014). https://doi.org/10.1007/s11270-014-1934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1934-9

Keywords

Navigation