Skip to main content
Log in

Removal of a Cationic Dye from Aqueous Solution by Microwave Activated Clinoptilolite—Response Surface Methodology Approach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Natural clinoptilolite from Zlatokop deposit, Serbia, was activated by microwave irradiations (10 min, 550 W) and its adsorptive efficiency for removal of crystal violet (CV) dye from aqueous solution was investigated. The process variables were specified by response surface method and the central composite design (CCD). Percentage of dye removal as a function of two numeric factors (the amount of zeolite and the concentration of crystal violet) with five values (rotatibility factor α = 0. 41) and one numeric factor (contact or agitation time) with three values (rotatibility factor α = 1. 00) at dynamic ambient conditions and pH = 6 was tested. The optimal conditions for 91.99 % decolorization were predicted to be 2 g of the zeolite in 100 ml of CV aqueous solution with concentration of 250 mg/l, and contact time of 678 s. The model was validated experimentally. Two isotherm models—Langmuir type 2 and Freundlich could describe the adsorption process with high correlation to experimental data. The calculated adsorbent capacity from the CCD (12.625 mg/g) showed a good agreement with the adsorption capacity obtained by Langmuir-2 isotherm (13.477 mg/g) and with pseudo-second-order kinetic model (12.404 mg/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad, R. (2009). Studies on adsorption of crystal violet dye from aqueous solution onto Coniferous pinus bark powder (CPBP). Journal of Hazardous Materials, 171(1–3), 767–773.

    Article  CAS  Google Scholar 

  • Ahmad, M. A., & Rahman, N. K. (2011). Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon. Chemical Engineering Journal, 170, 154–161.

    Article  CAS  Google Scholar 

  • Ali, I. (2010). Quest for the active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Separation & Purification Reviews, 39, 95–171.

    Article  CAS  Google Scholar 

  • Ali, I. (2012). New generation adsorbents for water treatment. Chemical Reviews, 112, 5073–5091.

    Article  CAS  Google Scholar 

  • Ali, I. (2014). Water treatment by adsorption columns: evaluation at ground level. Separation & Purification Reviews, 43, 175–205.

    Article  CAS  Google Scholar 

  • Ali, I., & Gupta, V. K. (2007). Advances in water treatment by adsorption technology. Nature Protocols, 1, 2661–2667.

    Article  Google Scholar 

  • Ali, I., Asim, M., & Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183.

    Article  CAS  Google Scholar 

  • Allen, S. J., & Koumanova, B. (2005). Decolourisation of water/wastewater using adsorption (review). Journal of the University of Chemical Technology and Metallurgy, 40(3), 175–192.

    CAS  Google Scholar 

  • Amini, M., Younesi, H., Bahramifar, N., Lorestani, A. A. Z., Ghorban, F., Daneshi, A., & Sharifzadeh, M. (2008). Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. Journal of Hazardous Materials, 154, 694–702.

    Article  CAS  Google Scholar 

  • Ania, C. O., Parra, J. B., Menendez, J. A., & Pis, J. J. (2005). Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Microporous and Mesoporous Materials, 85, 7–15.

    Article  CAS  Google Scholar 

  • Ariyanto, E. (2009). Adsorption malchite green on natural zeolite. Reaktor, 12(3), 161–165.

    Google Scholar 

  • Arulkumar, M., Sathishkumar, P., & Palvannan, T. (2011). Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. Journal of Hazardous Materials, 186, 827–834.

    Article  CAS  Google Scholar 

  • Cerjan-Stefanović, Š., Zabukovec Logar, N., Margeta, K., Novak Tušar, N., Arčon, I., Maver, K., Kovač, J., & Kaučič, V. (2007). Structural investigation of Zn2+ sorption on clinoptilolite tuff from the Vranjska Banja deposit in Serbia. Microporous and Mesoporous Materials, 105(3), 251–259.

    Article  Google Scholar 

  • Dąbrowski, A. (2001). Adsorption—from theory to practice. Advances in Colloid and Interface Science, 93, 135–224.

    Article  Google Scholar 

  • Doğan, M., Abak, H., & Alkan, M. (2008). Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms. Water, Air, and Soil Pollution, 192, 141–153.

    Article  Google Scholar 

  • Ghorbani, F., Younesi, H., Ghasempouri, S. M., Zinatizadeh, A. A., Amini, M., & Daneshi, A. (2008). Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chemical Engineering Journal, 145, 267–275.

    Article  CAS  Google Scholar 

  • Gregorio, C. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97(9), 1061–1085.

    Article  Google Scholar 

  • Han, R., Wang, Y., Sun, Q., Wang, L., Song, J., He, X., & Dou, C. (2010). Malachite green adsorption onto natural zeolite and reuse by microwave irradiation. Journal of Hazardous Materials, 175, 1056–1061.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006). Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Polish Journal of Environmental Studies, 15, 81–86.

    CAS  Google Scholar 

  • Jovanovic, M., Rajic, N., & Obradovic, B. (2012). Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite. Journal of Hazardous Materials, 233–234, 57–64.

    Article  Google Scholar 

  • Khambhaty, Y., Mody, K., & Basha, S. (2011). Equilibrium modeling for biosorption of safranin onto chemically modified biomass of marine Aspergillus wentii. Water, Air, and Soil Pollution, 215, 679–691.

    Article  CAS  Google Scholar 

  • Khambhaty, Y., Mody, K., & Basha, S. (2012). Efficient removal of Brilliant Blue G (BBG) from aqueous solutions by marine Aspergillus wentii: kinetics, equilibrium and process design. Ecological Engineering, 41, 74–83.

    Article  Google Scholar 

  • Kousha, M., Daneshvar, E., Dopeikar, H., Taghavi, D., & Bhatnagar, A. (2012). Box–Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chemical Engineering Journal, 179, 158–168.

    Article  CAS  Google Scholar 

  • Kyzas, G. Z., Kostoglou, M., Vassiliou, A. A., & Lazaridis, N. K. (2011). Treatment of real effluents from dyeing reactor: experimental and modeling approach by adsorption onto chitosan. Chemical Engineering Journal, 168, 577–585.

    Article  CAS  Google Scholar 

  • Liu, X. T., Quan, X., Bo, L. L., Chen, S., & Zhao, Y. Z. (2004). Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon, 42, 415–422.

    Article  CAS  Google Scholar 

  • Mansouri, N., Rikhtegar, N., Panahi, H. A., Atabi, F., & Shahraki, B. K. (2013). Porosity, characterization, and structural properties of natural zeolite–clinoptilolite—as a sorbent. Environment Protection Engineering, 39(1), 139–152.

    CAS  Google Scholar 

  • Margeta, K., Zabukovec Logar, N., Šiljeg, M. and Farkaš, A. (2013). Natural zeolites in water treatment—how effective is their use, in Ed. Walid Elshorbagy and Rezaul Kabir Chowdhury, Water treatment (pp. 81–112). Intechopen.com.

  • Mittal, A., Mittal, J., Malviya, A., Kaur, D., & Gupta, V. (2010). Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science, 343, 463–473.

    Article  CAS  Google Scholar 

  • Mona, S., Kaushik, A., & Kaushik, C. P. (2011). Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: optimization based on statistical model. International Biodeterioration & Biodegradation, 65(3), 513–521.

    Article  CAS  Google Scholar 

  • Ohgushi, T., & Nagae, M. (2003). Quick activation of optimized zeolites with microwave heating and utilization of zeolites for reusable desiccant. Journal of Porous Materials, 10(2), 139–143.

    Article  CAS  Google Scholar 

  • Pechar, F., & Rykl, D. (1981). Infrared spectra of natural zeolites of the stilbite group. Chemicke Zvesti, 35(2), 189–202.

    CAS  Google Scholar 

  • Quan, X., Liu, X. T., Bo, L. L., Chen, S., Zhao, Y. Z., & Cui, X. Y. (2004). Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation. Water Reseach, 38, 4484–4490.

    Article  CAS  Google Scholar 

  • Rajic, N., Stojakovic, D., Jevtic, S., Zabukovec Logar, N., Kovac, J., & Kaucic, V. (2009). Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia. Journal of Hazardous Materials, 172, 1450–1457.

    Article  CAS  Google Scholar 

  • Rajic, N., Stojakovic, D., Daneu, N., & Recnik, A. (2011). The formation of oxide nanoparticles on the surface of natural clinoptilolite. Journal of Physics and Chemistry of Solids, 72(6), 800–803.

    Article  CAS  Google Scholar 

  • Sarioglu, M., Askal, M. Removal of azo dye (basic red46) from wastewaters using biosolids: Response surface methodology and experimental design. Proceedings of the 12th International Conference on Environmental Science and Technology. Rhodes, Greece, 8–10, September 2011.

  • Sudamalla, P., Saravanan, P., & Matheswaran, M. (2012). Optimization of operating parameters using response surface methodology for adsorption of crystal violet by activated carbon prepared from mango kernel. Sustainable Environment Research, 22(1), 1–7.

    CAS  Google Scholar 

  • Vadivelan, V., & Kumar, K. V. (2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science, 286, 90–100.

    Article  CAS  Google Scholar 

  • Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11–24.

    Article  CAS  Google Scholar 

  • Wang, S., Li, H., & Xu, L. (2006). Application of zeolite MCM-22 for basic dye removal from wastewater. Journal of Colloid and Interface Science, 295, 71–78.

    Article  CAS  Google Scholar 

  • Yagub, M. T., Tushar, K. S., & Ang, H. M. (2012). Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water, Air, and Soil Pollution, 223, 5267–5282.

    Article  CAS  Google Scholar 

  • Yuen, F. K., & Hameed, B. H. (2009). Recent developments in the preparation and regeneration of activated carbons by microwaves. Advances in Colloid and Interface Science, 149, 19–27.

    Article  CAS  Google Scholar 

  • Zubieta, C., Sierra, M. B., Morini, M. A., Schulz, P. C., Albertengo, L., & Rodríguez, M. S. (2008). The adsorption of dyes used in the textile industry on mesoporous materials. Colloid and Polymer Science, 286, 377–384.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this investigation given by Ministry of Science and Education of the Republic of Serbia under the projects TR 31035 and OS 172-018 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Dimitrijević-Branković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buntić, A., Pavlović, M., Mihajlovski, K. et al. Removal of a Cationic Dye from Aqueous Solution by Microwave Activated Clinoptilolite—Response Surface Methodology Approach. Water Air Soil Pollut 225, 1816 (2014). https://doi.org/10.1007/s11270-013-1816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1816-6

Keywords

Navigation