Skip to main content
Log in

Preparation of Poly(Humic Acid) Particles and Their Use in Toxic Organo-Phenolic Compound Removal from Aqueous Environments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Particles derived from humic acid, as p(HA), are synthesized in a single step via a water-in-oil microemulsion system employing different cross-linkers such as divinylsulfone (DVS), glutaraldehyde (GA), epichlorohydrine (ECH), and adipochloride (AC). The different phenolic groups on humic moieties are connected via these cross-linkers to form particles. The prepared p(HA) particles were successfully used in the removal of toxic organo-phenolic such as phenol (Ph), 4-nitrophenol (4-NPh), 4-chlorophenol (4-CPh), 2-chlorophenol (2-CPh), and 2,3-dichlorophenol (2,3-CPh) from aqueous environments. Various parameters such as pH, contact time, reusability of particles, and the initial concentration of adsorbate are investigated. It is found that the absorption capacity of p(HA) particles for Ph is 180 mg/g, and the maximum absorption amount is obtained at pH 6. Furthermore, the reuse experiments are shown that p(HA) particles can release the absorbed Ph by the treatment of methanol, and an absorption capacity of 85 % is attainable up to five consecutive absorption and release cycles. p(HA) particles are characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), zeta potential, thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) techniques.

p(HA) particles can be used repetitively in the removal of toxic phenolic compounds, e.g., phenol from aqueous environments

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amat, A. M., Arques, A., Lopez, F., & Miranda, M. A. (2005). Solar photo catalysis to remove paper mill wastewater pollutants. Solar Energy, 79, 393–401.

    Article  CAS  Google Scholar 

  • Dabrowski, A., Podkoscielny, P., Hubicki, Z., & Barczak, M. (2005). Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere, 58, 1049–1070.

    Article  CAS  Google Scholar 

  • Fang, H. P., Liang, D. W., & Zhang, T. (2006). Anaerobic treatment of phenol in wastewater under thermophilic condition. Water Research, 40, 427–434.

    Article  CAS  Google Scholar 

  • Iglesias, A., Lopez, R., Gondar, D., Antelo, J., Fiol, S., & Arce, F. (2009). Effect of pH and ionic strength on the binding of paraquat and MCPA by soil fulvic and humic acids. Chemosphere, 76, 107–113.

    Article  CAS  Google Scholar 

  • Jing, G., Wang, L., Yu, H., Amer, W. A., & Zhang, L. (2013). Recent progress on study of hybrid hydrogels for water treatment. Colloids and Surfaces A: Physicochemical Engineering Aspects, 416, 86–94.

    Article  Google Scholar 

  • Kantar, C. (2007). Heterogeneous processes affecting metal ion transport in the presence of organic ligands: reactive transport modeling. Earth Science Reviews, 81(3–4), 175–198.

    Article  CAS  Google Scholar 

  • Ko, C. H., Fan, C., Chiang, P. N., Wang, M. K., & Lin, K. C. (2007). p-Nitrophenol, phenol and aniline sorption by organo-clays. Journal of Hazardous Materials, 149, 275–282.

    Article  CAS  Google Scholar 

  • Kujawski, W., Warszawski, A., & Ratajczak, W. (2004). Removal of phenol from wastewater by different separation techniques. Desalination, 163, 287–296.

    Article  CAS  Google Scholar 

  • Liu, T., & Lo, I. M. C. (2011). Influences of humic acid on Cr(VI) removal by zero-valent iron from groundwater with various constituents: implication for long-term PRB performance. Water, Air, and Soil Pollution, 216, 473–483.

    Article  CAS  Google Scholar 

  • Makarand, G. J., & Robert, L. S. (1982). The kinetics of ozone-phenol reaction in aqueous solutions. Water Research, 16, 933–938.

    Article  Google Scholar 

  • Moura, M. N., Martin, M. J., & Burguillo, F. J. (2007). A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge. Journal of Hazardous Materials, 149, 42–48.

    Article  CAS  Google Scholar 

  • Murphy, R. J., Lenhart, J. J., & Honeyman, B. D. (1999). The sorption of thorium (IV) and uranium (VI) to hematite in the presence of natural organic matter. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 157, 47–62.

    Article  CAS  Google Scholar 

  • Ohlenbusch, G., Kumke, M. U., & Frimmel, F. H. (2000). Sorption of phenols to dissolved organic matter investigated by solid phase microextraction. Science of the Total Environment, 253, 63–74.

    Google Scholar 

  • Ozay, O., Ekici, S., Baran, Y., Aktas, N., & Sahiner, N. (2009). Removal of toxic metal ions with magnetic hydrogels. Water Research, 43, 4403–4411.

    Article  CAS  Google Scholar 

  • Parent, M. E., & Velegol, D. (2004). E. coli adhesion to silica in the presence of humic acid. Colloids and Surfaces. B, Biointerfaces, 39, 45–51.

    Article  CAS  Google Scholar 

  • Perez, M., & Torrades, F. (2002). Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Applied Catalysis B: Environmental, 36, 63–74.

    Article  CAS  Google Scholar 

  • Perez, I. V., Rogak, S., & Branion, R. (2004). Supercritical water oxidation of phenol and 2,4-dinitrophenol. Journal of Supercritical Fluids, 30, 71–87.

    Article  Google Scholar 

  • Sagbas, S., Butun, S., & Sahiner, N. (2012). Modifiable chemically crosslinked poli(ĸ-carrageenan) particles. Carbohydrate Polymers, 87, 2718–2724.

    Article  CAS  Google Scholar 

  • Sahiner, N., & Sagbas, S. (2013). The preparation of poly(vinyl phosphonic acid) hydrogels as new functional materials for in situ metal nanoparticle preparation. Colloids and Surfaces A: Physicochemical Engineering Aspects, 418, 76–83.

    Article  CAS  Google Scholar 

  • Sahiner, N., Ozay, O., & Aktas, N. (2011). Aromatic organic contaminant removal from an aqueous environment by p(4-VP)-based materials. Chemosphere, 85, 832–838.

    Article  CAS  Google Scholar 

  • Sahiner, N., Silan, C., Sagbas, S., Ilgin, P., Butun, S., Erdugan, H., et al. (2012). Porous and modified HA particles as potential drug delivery systems. Microporous and Mesoporous Materials, 155, 124–130.

    Article  CAS  Google Scholar 

  • Saitoh, T., Sugiura, Y., Asano, K., & Hiraide, M. (2009). Chitosan-conjugated thermo-responsive polymer for the rapid removal of phenol in water. Reactive & Functional Polymers, 69, 792–796.

    Article  CAS  Google Scholar 

  • Santos, A., Yustos, P., & Gomis, S. (2006). Reaction network and kinetic modeling of wet oxidation of phenol catalyzed by activated carbon. Chemical Engineering Science, 61, 2457–2467.

    Article  CAS  Google Scholar 

  • Temmink, H., & Grolle, K. (2005). Tertiary activated carbon treatment of paper and broad industry wastewater. Bioresource Technology, 96, 1683–1689.

    Article  CAS  Google Scholar 

  • Vermeer, A. W. P., van Riemsdijk, W. H., & Koopal, L. K. (1998). Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interactions. Langmuir, 14, 2810–2819.

    Article  CAS  Google Scholar 

  • Wang, D. Y., Qıng, C. L., Guo, T. Y., & Guo, Y. J. (1997). Effects of humic acid on transport and transformation of mercury in soil-plant systems. Water, Air, and Soil Pollution, 95, 35–43.

    CAS  Google Scholar 

  • Westall, J. C., Leuenberger, C., & Schwarzenbach, R. P. (1985). Influence of pH and ionic strength on the aqueous-nonaqueous distribution of chlorinated phenols. Environmental Science & Technology, 19, 193–198.

    Article  CAS  Google Scholar 

  • Yamashita, Y., Tanaka, T., & Adachi, Y. (2013). Transport behavior and deposition kinetics of humic acid under acidic conditions in porous media. Colloids and Surfaces A: Physicochemical Engineering Aspects, 417, 230–235.

    Article  CAS  Google Scholar 

  • Zhao, L., & Lee, H. K. (2001). Determination of phenols in water using liquid phase microextraction with back extraction combined with high-performance liquid chromatography. Journal of Chromatography. A, 931, 95–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N. Sahiner is grateful for the partial financial support by the Turkish Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurettin Sahiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagbas, S., Kantar, C. & Sahiner, N. Preparation of Poly(Humic Acid) Particles and Their Use in Toxic Organo-Phenolic Compound Removal from Aqueous Environments. Water Air Soil Pollut 225, 1809 (2014). https://doi.org/10.1007/s11270-013-1809-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1809-5

Keywords

Navigation