Skip to main content
Log in

Affinity of Selected Elements to Individual Fractions of Soil Organic Matter

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The distribution of selected elements in individual fractions of organic matter from anthropogenically contaminated soils was investigated. The attention was paid especially at Hg. Furthermore, contents of S, Mg, Mn, Fe, Cu, Zn and Pb were also measured. The decomposition of organic matter to particular fractions was carried out by the resin DAX-8. Ten soil samples were collected, and the Advanced Mercury Analyzer (AMA-254) was used for the determination of the total Hg content. The two highest Hg values reached up to the concentration 10.5 mg kg−1, and in the highest one, it was almost 29 mg kg−1. In each extract, mercury was measured by inductively coupled plasma mass spectrometry (ICP-MS), for other elements, inductively coupled plasma optical emission spectrometry (ICP-OES) was applied. Results of the analysis show that the Hg content bound to the humic acids is inversely proportional to the content of Mg, Mn, Fe and Cu. However, this dependence was not confirmed by the samples with the mercury content above 10 mg kg−1. In the case of fulvic acids, the relationship between Hg and S was observed and has again an inverse character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Borůvka, L., & Drábek, O. (2004). Heavy metal distribution between fractions of humic substances in heavily polluted soils. Plant, Soil and Environment, 50, 339–345.

    Google Scholar 

  • Boszke, L., Kowalski, A., Astel, A., Barański, A., Gworek, B., & Siepak, J. (2008). Mercury mobility and bioavailability in soil from contaminated area. Environmental Geology, 55, 1075–1087. doi:10.1007/s00254-007-1056-4.

    Article  CAS  Google Scholar 

  • Calace, N., Ciardullo, S., Petronio, B. M., Pietrantonio, M., Abbondanzi, F., Campisi, T., et al. (2005). Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchemical Journal, 79, 243–248. doi:10.1016/j.microc.2004.10.005.

    Article  CAS  Google Scholar 

  • Chai, X., Liu, G., Zhao, X., Hao, Y., & Zhao, Y. (2012). Complexion between mercury and humic substances from different landfill stabilization processes and its implication for the environment. Journal of Hazardous Materials, 209–210, 59–66. doi:10.1016/j.jhazmat.2011.12.077.

    Article  Google Scholar 

  • Clemente, R., & Bernal, M. P. (2006). Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere, 64, 1264–1273. doi:10.1016/j.chemosphere.2005.12.058.

    Article  CAS  Google Scholar 

  • Czech Ministry of the Environment. (1994). Public notice No. 13/1994, regulating some details concerning the preservation of agricultural lands available. Prague: Czech Ministry of the Environment.

    Google Scholar 

  • Fest, E. P. M. J., Temminghoff, E. J. M., Coman, R. N. J., & van Riemsdijk, W. H. (2008). Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution, solid to liquid ratio and pH. Geoderma, 146, 66–74. doi:10.1016/j.geoderma.2008.05.005.

    Article  CAS  Google Scholar 

  • Fujikawa, Y., & Fukui, M. (2001). Vertical distribution of trace metals in natural soil horizons from Japan. Part 2: effects of organic components in soil. Water, Air, & Soil Pollution, 13, 305–328. doi:10.1023/A:1011927802703.

    Article  Google Scholar 

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts. Journal of Trace Elements in Medicine and Biology, 19, 125–140. doi:10.1016/j.jtemb.2005.02.010.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace Elements in Soils and Plants (3rd ed.). USA: CRC Press.

    Google Scholar 

  • Kacálková, L., Tlustoš, P., & Száková, J. (2009). Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant, Soil and Environment, 55, 295–304.

    Google Scholar 

  • Laborda, F., Ruiz-Beguería, S., Bolea, E., & Castillo, J. R. (2009). Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis. Spectrochimica Acta, Part B, 392, 392–398. doi:10.1016/j.sab.2009.04.007.

    Article  Google Scholar 

  • Liaghati, T., Preda, M., & Cox, M. (2003). Heavy metal distribution and controlling factors within coastal plain sediment, Bells Creek catchment, southeast Queensland, Australia. Environment International, 29, 935–948. doi:10.1016/S0160-4120(03)00060-6.

    Article  Google Scholar 

  • Linde, M., Öborn, I., & Gustafsson, J. P. (2007). Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils. Water, Air, & Soil Pollution, 183, 69–83. doi:10.1007/s11270-007-9357-5.

    Article  CAS  Google Scholar 

  • Milne, C. J., Kinniburgh, D. G., van Riemsdijk, W. H., & Tipping, E. (2003). Generic NICADonnan model parameters for metal-ion binding by humic substances. Environmental Science & Technology, 37, 958–971. doi:10.1021/es0258879.

    Article  CAS  Google Scholar 

  • Miretzky, P., Bisinoti, M. C., & Jardin, W. F. (2005). Sorption of mercury (II) in Amazon soils from column studies. Chemosphere, 60, 1583–1589. doi:10.1016/j.chemosphere.2005.02.050.

    Article  CAS  Google Scholar 

  • Novozamsky, J., Lexmond, T. M., & Houba, V. J. G. (1993). A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51, 47–58. doi:10.1080/03067319308027610.

    Article  CAS  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43, 795–805. doi:10.1007/s00254-002-0694-9.

    CAS  Google Scholar 

  • Römkens, P. F., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., & Koopmans, G. F. (2009). Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. Journal of Soils and Sediments, 9, 216–228. doi:10.1007/s11368-009-0075-z.

    Article  Google Scholar 

  • Salizzato, M., Pavoni, B., Ghilardini, A. V., & Ghetti, P. F. (1998). Sediment toxicity measured using Vibrio fischeri related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere, 36, 2949–2968. doi:10.1016/S0045-6535(98)00001-0.

    Article  CAS  Google Scholar 

  • Schlüter, K. (1997). Sorption of inorganic mercury and monomethyl mercury in an iron–humus podzol soil of southern Norway studied by batch experiments. Environmental Geology, 30, 266–278. doi:10.1007/s002540050156.

    Article  Google Scholar 

  • Schwesig, D., Ilgen, G., & Matzner, E. (1999). Mercury and methylmercury in upland and wetland acid forest soils of a watershed in Ne-Bavaria, Germany. Water, Air, & Soil Pollution, 113, 141–154. doi:10.1023/A:1005080922234.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1994). Humus Chemistry: Genesis, Composition, Reactions (2nd ed.). New York, NY, USA.

  • Sun, F. F., Wen, D. Z., Kuang, Y. W., Li, J., & Zhang, J. G. (2009). Concentrations of sulphur and heavy metals in needles and rooting soils of Masson pine (Pinus massoniana L.) trees growing along an urban–rural gradient in Guangzhou, China. Environmental Monitoring and Assessment, 154, 263–274. doi:10.1007/s10661-008-0394-3.

    Article  CAS  Google Scholar 

  • Száková, J., Kolihová, D., Miholová, D., & Mader, P. (2004). Single-Purpose Atomic Absorption Spectrometer AMA-254 for mercury determination and its performance in analysis of agricultural and environmental materials. Chemical Papers, 58, 311–315.

    Google Scholar 

  • Terbouche, A., Djebbar, S., Benali-Baitich, Q., & Hauchard, D. (2011). Complexation study of humic acids extracted from forest and sahara soils with zinc (II) and cadmium (II) by differential pulse anodic stripping voltammetry (DPASV) and conductimetric methods. Water, Air, & Soil Pollution, 216, 679–691. doi:10.1007/s11270-010-0562-2.

    Article  CAS  Google Scholar 

  • Thornton, I. (1981). Geochemical aspects of the distribution and forms of heavy metals in soil. In N. W. Leep (Ed.), Effect of heavy metal pollution on plants: metals in the environment, vol. II. UK: London and New Jersey: Applied Sciences Publishing.

    Google Scholar 

  • van Zomeren, A., & Comans, R. N. J. (2007). Measurement of humic and fulvic acid concentrations and dissolution properties by a rapid batch procedure. Environmental Science & Technology, 41, 6755–6761. doi:10.1021/es0709223.

    Article  Google Scholar 

  • Weng, L., Temminghoff, E. J. M., Lofts, S., Tipping, E., & van Riemsdijk, W. H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environmental Science & Technology, 36, 4804–4810. doi:10.1021/es0200084.

    Article  CAS  Google Scholar 

  • Xia, K., Skyllberg, U. L., Bleam, W. F., Bloom, R. P., Nater, E. A., & Helmke, P. A. (1999). X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances. Environmental Science & Technology, 33, 257–261. doi:10.1021/es980433q.

    Article  CAS  Google Scholar 

  • Yang, Z., Hansen, S., Hu, Z., & Riley, H. (2007). Aggregate associated sulfur fractions in long-term (>80 years) fertilized soils. Soil Science Society of America Journal, 71, 163–170. doi:10.2136/sssaj2006.0242.

    Article  CAS  Google Scholar 

  • Yao, A., Qing, C., Mu, S., & Reardon, E. J. (2006). Effects of humus on the environmental activity of mineral-bound Hg: influence on Hg volatility. Applied Geochemistry, 21, 446–454. doi:10.1016/j.apgeocehem.2005.10.003.

    Article  Google Scholar 

  • Zhang, J., Dai, J., Wang, R., Li, F., & Wang, W. (2009). Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloids and Surfaces A: Physicochem. Eng. Aspects, 335, 194–201. doi:10.1016/j.colsurfa.2008.11.006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Šípková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šípková, A., Száková, J. & Tlustoš, P. Affinity of Selected Elements to Individual Fractions of Soil Organic Matter. Water Air Soil Pollut 225, 1802 (2014). https://doi.org/10.1007/s11270-013-1802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1802-z

Keywords

Navigation