Skip to main content
Log in

A Semi-Analytical Solution for the Reactive Henry Saltwater Intrusion Problem

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Because of the existence of a semi-analytical solution, the Henry saltwater intrusion problem has been widely used for benchmarking non-reactive density-driven flow models. In this work, we extend the semi-analytical solution of Henry to reactive transport in variable-density fluid flow. Accurate semi-analytical solutions are provided for three test cases dealing with saltwater transport including dissolution and degradation reactions. About 6,195 terms are required in the Fourier series to obtain a stable solution for these test cases instead of the 78 initially used by Henry (Sea Water in Coastal Aquifers 1613-C:70–84, 1964) for the non-reactive problem. The resolution of the highly non-linear system is made possible due to the modified Powell hybrid algorithm with an analytical evaluation of the Jacobian. Numerical simulations are performed using different numerical methods and grid sizes to evaluate the benefits of these new test cases for benchmarking reactive density-driven flow models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aavatsmark, I. (2002). An introduction to multipoint flux approximations for quadrilateral grids. Computers & Geosciences, 6, 404–432.

    Google Scholar 

  • Abarca, E., Carrera, J., Sanchez-Vila, X., & Dentz, M. (2007). Anisotropic dispersive Henry problem. Advances in Water Resources, 30, 913–926.

    Article  Google Scholar 

  • Ackerer, P., & Younes, A. (2008). Efficient approximations for the simulation of density driven flow in porous media. Advances in Water Resources, 31, 15–27.

    Article  Google Scholar 

  • Ackerer, P., Younes, A., & Mosé, R. (1999). Modeling variable density flow and solute transport in porous medium: 1. Numerical model and verification. Transport in Porous Media, 35, 345–373.

    Article  Google Scholar 

  • Bauer-Gottwein, P., Langer, T., Prommer, H., Wolski, P., & Kinzelbach, W. (2007). Okavango Delta islands: interaction between density-driven flow and geochemical reactions under evapo-concentration. Journal of Hydrology, 335, 389–405.

    Article  Google Scholar 

  • Boluda-Botella, N., Gomis-Yages, V., & Ruiz-Bevi, F. (2008). Influence of transport parameters and chemical properties of the sediment in experiments to measure reactive transport in seawater intrusion. Journal of Hydrology, 357, 29–41.

    Article  Google Scholar 

  • Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation (American Mathematical Society), 19(92), 577–593. doi:10.2307/2003941.

    Article  Google Scholar 

  • Buès, M., & Oltéan, C. (2000). Numerical simulations for saltwater intrusion by the mixed hybrid finite element method and discontinuous finite element method. Transport in Porous Media, 40, 171–200.

    Article  Google Scholar 

  • Christensen, F. D., Engesgaard, P., Kipp, K. (2001). A reactive transport investigation of a seawater intrusion experiment in a shallow aquifer. First international conference on saltwater intrusion and coastal aquifers—monitoring, modeling, and management. Essaouira, Morocco.

  • Forbes, L. K. (1988). Surface waves of large amplitude beneath an elastic sheet. Part 2: Galerkin solution. Journal of Fluid Mechanics, 188, 491–508.

    Article  Google Scholar 

  • Freedman, V., & Ibaraki, M. (2002). Effects of chemical reactions on density-dependent fluid flow: on the numerical formulation and the development of instabilities. Advances in Water Resources, 25, 439–453.

    Article  CAS  Google Scholar 

  • Henry, H. R. (1964). Effects of dispersion on salt encroachment in coastal aquifers, in Sea Water in Coastal Aquifers, U.S. Geol. Surv. Supply Pap., 1613-C, 70–84.

  • Herbert, A. W., Jackson, C. P., & Lever, D. A. (1988). Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration. Water Resources Research, 24, 1781–1795.

    Article  CAS  Google Scholar 

  • Huyakorn, P. S., Andersen, P. F., Mercer, J. W., & White, H. O. (1987). Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resources Research, 23, 293–312.

    Article  CAS  Google Scholar 

  • Kolditz, O., Ratke, R., Diersch, H. J., & Zielke, W. (1998). Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Advances in Water Resources, 21, 27–46.

    Article  Google Scholar 

  • Konz, M., Ackerer, P., Younes, A., Huggenberger, P., & Zechner, E. (2009). Two-dimensional stable-layered laboratory-scale experiments for testing density-coupled flow models. Water Resources Research, 45, W02404. doi:10.1029/2008WR00711.

    Article  Google Scholar 

  • Mao, X., Prommer, H., Barry, D., Langevin, C., Panteleit, B., & Li, L. (2006). Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environmental Modelling & Software, 21(5), 615–628.

    Article  Google Scholar 

  • Molinero, J., Raposo, J. R., Galíndez, J. M., Arcos, D., & Guimerá, J. (2008). Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden). Applied Geochemistry, 23, 1957–1981.

    Article  CAS  Google Scholar 

  • Moré, J., Garbow, B., & Hillstrom, K. (1980). User guide for MINPACK-1, Argonne National Labs Report ANL-80-74. Illinois: Argonne.

    Google Scholar 

  • Nick, H. M., Raoof, A., Centler, F., Thullner, M., & Regnier, P. (2013). Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive Henry problem. Journal of Contaminant Hydrology, 145, 90–104.

    Article  CAS  Google Scholar 

  • Oldenburg, C. M., & Pruess, K. (1995). Dispersive transport dynamics in a strongly coupled groundwater-brine flow system. Water Resources Research, 31, 289–302.

    Article  CAS  Google Scholar 

  • Post, V. E. A., & Prommer, H. (2007). Multicomponent reactive transport simulation of the Elder problem: effects of chemical reactions on salt plume development. Water Resources Research, 43, W10404. doi:10.1029/2006WR005630.

    Article  Google Scholar 

  • Rezaei, M., Sanz, E., Raeisi, E., Ayora, C., Vazquez-Sune, E., & Carrera, J. (2005). Reactive transport modeling of calcite dissolution in the fresh–salt water mixing zone. Journal of Hydrology, 311(1–4), 282–298.

    Article  Google Scholar 

  • Santoro, A. (2010). Microbial nitrogen cycling at the saltwater–freshwater interface. Hydrogeology Journal, 18, 187–202.

    Article  CAS  Google Scholar 

  • Segol, G. (1994). Classic groundwater simulations proving and improving numerical models. Old Tappan: Prentice-Hall.

    Google Scholar 

  • Siegel, P., Mose, R., Ackerer, P., & Jaffré, J. (1997). Solution of the advection diffusion equation using a combination of discontinuous and mixed finite elements. International Journal for Numerical Methods in Fluids, 24, 595–613.

    Article  Google Scholar 

  • Simpson, M. J., & Clement, T. P. (2004). Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Resources Research, 40, W01504. doi:10.1029/2003WR002199.

    Article  Google Scholar 

  • Voss, C. I., & Souza, W. R. (1987). Variably density flow and solute transport simulation of regional aquifers containing a narrow freshwater–saltwater transition zone. Water Resources Research, 23(10), 1851–1866.

    Article  CAS  Google Scholar 

  • Younes, A., & Ackerer, P. (2008). Solving the advection–dispersion equation with discontinuous Galerkin and multipoint flux approximation methods on unstructured meshes. International Journal for Numerical Methods in Fluids, 58(6), 687–708.

    Article  Google Scholar 

  • Younes, A., & Ackerer, P. (2010). Empirical versus time stepping with embedded error control for density-driven flow in porous media. Water Resources Research, 46, W08523. doi:10.1029/2009WR008229.

    Article  Google Scholar 

  • Younes, A., & Fontaine, V. (2008a). Hybrid and multi-point formulations of the lowest-order mixed methods for Darcy's flow on triangles. International Journal for Numerical Methods in Fluids, 58, 1041–1062.

    Article  CAS  Google Scholar 

  • Younes, A., & Fontaine, V. (2008b). Efficiency of mixed hybrid finite element and multipoint flux approximation methods on quadrangular grids and highly anisotropic media. International Journal for Numerical Methods in Engineering, 76(3), 314–336.

    Article  Google Scholar 

  • Younes, A., Ackerer, P., & Lehmann, F. (2006). A new mass lumping scheme for the mixed hybrid finite element method. International Journal for Numerical Methods in Engineering, 67, 89–107.

    Article  Google Scholar 

  • Younes, A., Fahs, M., & Ahmed, S. (2009). Solving density flow problems with efficient spatial discretizations and higher-order time integration methods. Advances in Water Resources, 32, 340–352.

    Article  Google Scholar 

  • Younes, A., Ackerer, P., & Delay, F. (2010a). Mixed finite element for solving diffusion-type equations. Reviews of Geophysics, 48, RG1004. doi:10.1029/2008RG000277.

    Article  Google Scholar 

  • Younes, A., Fahs, M., & Ackerer, P. (2010b). An efficient geometric approach to solve the slope limiting problem with the Discontinuous Galerkin method on unstructured triangles. International Journal for Numerical Methods in Biomedical Engineering, 12, 1824–1835.

    Google Scholar 

  • Zidane, A., Younes, A., Huggenberger, P., & Zechner, E. (2012). The Henry semi-analytical solution for saltwater intrusion with reduced dispersion. Water Resources Research. doi:10.1029/2011WR011157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Fahs.

Appendix

Appendix

The non-linear algebraic equations are as follows:

$$ \begin{array}{c}\hfill {\varepsilon}_2a{\pi}^2{A}_{g,h}\left({g}^2+{h}^2\right)\xi ={\displaystyle \sum_{r=0}^{\infty }{B}_{r,h} hN\left(g,r\right)+\frac{4}{\pi }W\left(g,h\right)}\hfill \\ {}\hfill {\varepsilon}_1b{\pi}^2{B}_{g,h}\left({g}^2+\frac{h^2}{\xi^2}\right)\xi ={\displaystyle \sum_{n=0}^{\infty }{A}_{g,n} gN\left(h,n\right)+{\varepsilon}_1{\displaystyle \sum_{s=1}^{\infty }{B}_{g,s} sN\left(h,s\right)}+\mathrm{Quad}+\frac{4}{\pi }W\left(h,g\right)+{R}_{g,h}}\hfill \end{array} $$

where

$$ \begin{array}{l}\begin{array}{ccc}\hfill {\varepsilon}_1=\left\{\begin{array}{l}2,\mathrm{if}:g=0\hfill \\ {}1,\mathrm{if}:g\ne 0\hfill \end{array}\right.\hfill & \hfill \mathrm{and}\hfill & \hfill {\varepsilon}_2=\left\{\begin{array}{l}2,\mathrm{if}:h=0\hfill \\ {}1,\mathrm{if}:h\ne 0\hfill \end{array}\right.\hfill \end{array}\hfill \\ {}N\left(h,n\right)=\frac{{\left(-1\right)}^{h+n}-1}{h+n}+\frac{{\left(-1\right)}^{h-n}-1}{h-n}\hfill \\ {}W\left(h,g\right)=\left\{\begin{array}{l}\frac{{\left(-1\right)}^h-1}{h}, if:g=0\hfill \\ {}\begin{array}{cc}\hfill 0,\hfill & \hfill if:g\ne 0\hfill \end{array}\hfill \end{array}\right.\hfill \\ {}\mathrm{Quad}=\frac{\pi }{4}{\displaystyle \sum_{m=1}^{\infty }{\displaystyle \sum_{n=0}^{\infty }{\displaystyle \sum_{r=0}^{\infty }{\displaystyle \sum_{s=1}^{\infty }{A}_{m,n}{B}_{r,s}\left(\mathrm{msLR}-\mathrm{nrFG}\right)}}}}\hfill \\ {}{R}_{g,h}=\left\{\begin{array}{ll}\left(2\xi {B}_{g,h}-4\xi \frac{{\left(-1\right)}^h}{\pi h}\right)\left(e+f\right)-4e{C}_s\xi \frac{1-{\left(-1\right)}^h}{\pi h}\hfill & \mathrm{if}\kern0.5em g=0\hfill \\ {}\xi {B}_{g,h}\left(e+f\right)\hfill & \mathrm{elsewhere}\hfill \end{array}\right.\hfill \end{array} $$

with

$$ \begin{array}{l}F={\delta}_{\left(m-r\right),g}+{\delta}_{\left(r-m\right),g}-{\delta}_{\left(m+r\right),g}\hfill \\ {}L={\delta}_{\left(m-r\right),g}+{\delta}_{\left(r-m\right),g}+{\delta}_{\left(m+r\right),g}\hfill \\ {}G=\frac{{\left(-1\right)}^{h+n-s}-1}{h+n-s}+\frac{{\left(-1\right)}^{h-n+s}-1}{h-n+s}-\frac{{\left(-1\right)}^{h+n+s}-1}{h+n+s}-\frac{{\left(-1\right)}^{h-n-s}-1}{h-n-s}\hfill \\ {}R=\frac{{\left(-1\right)}^{h+n-s}-1}{h+n-s}+\frac{{\left(-1\right)}^{h-n+s}-1}{h-n+s}+\frac{{\left(-1\right)}^{h+n+s}-1}{h+n+s}+\frac{{\left(-1\right)}^{h-n-s}-1}{h-n-s}\hfill \end{array} $$

and δ i,j is the Kronecker delta such that \( {\delta}_{i,j}=\left\{\begin{array}{c}\hfill 1,\mathrm{if}:i=j\hfill \\ {}\hfill 0,\mathrm{if}:i\ne j\hfill \end{array}\right. \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Younes, A., Fahs, M. A Semi-Analytical Solution for the Reactive Henry Saltwater Intrusion Problem. Water Air Soil Pollut 224, 1779 (2013). https://doi.org/10.1007/s11270-013-1779-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1779-7

Keywords

Navigation